Skip to main content

Effect of phytase treatment of sorghum flour, an alternative for gluten free foods and bioaccessibility of essential minerals


This study evaluated the effect of phytase treatment on the bioavailability of iron (Fe), calcium (Ca), zinc (Zn), and myo-inositol phosphate fractions in sorghum flour; and characterized its macronutrients and minerals. The proximate composition and mineral content indicated that, sorghum flour has a nutritional potential superior to wheat and maize. The results obtained in the solubility and dialysis assays indicated that, naturally occurring minerals (without phytase treatment) in sorghum flour, presented considerable bioaccessibility; reaching 32, 47 and 67% of dialyzable Fe, Zn, and Ca respectively. The use of phytase had a positive influence on the reduction of myo-inositol phosphates, mainly the IP6 fraction, present in sorghum flour samples, and an increase in the soluble percentage (Fe 52% for one sample, for Zn higher than 266%) and dialyzed minerals (Fe 7.8–150%; Zn 19.7 for one sample; and Ca 5–205%) for most samples. Therefore, the essential minerals naturally occurring in sorghum have an absorption potential; and the use of phytase reduced the IP6 fraction and improved the availability of the minerals evaluated.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. AACC (2010) Approved methods of analysis, 11th edn. AACC International, Saint Paul

    Google Scholar 

  2. Afify A-M, El-Beltagi H, Abd El-Salam S, Omran A (2011) Bioavailability of iron, zinc, phytate and phytase activity during soaking and germination of white sorghum varieties. PLoS ONE 6:e25512.

    CAS  Article  PubMed Central  Google Scholar 

  3. Afify AE-M, El-Beltagi H, El-Salam S, Omran A (2012) Effect of soaking, cooking, germination and fermentation processing on proximate analysis and mineral content of three white sorghum varieties (Sorghum bicolor L. Moench). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40:92–98.

    CAS  Article  Google Scholar 

  4. Al Hasan SM, Hassan M, Saha S, Islam M, Billah M, Islam S (2016) Dietary phytate intake inhibits the bioavailability of iron and calcium in the diets of pregnant women in rural Bangladesh: a cross-sectional study. BMC Nutr 2:24.

    Article  Google Scholar 

  5. Amalraj A, Pius A (2015) Influence of oxalate, phytate, tannin, dietary fiber, and cooking on calcium bioavailability of commonly consumed cereals and millets in India. Cereal Chem J 92:389–394.

    CAS  Article  Google Scholar 

  6. AOAC (1997) AOAC - Association of Official Analytical Chemists official methods of analysis of Association of Official Analytical Chemists, 16th edn. AOAC International, Gaithersburg

    Google Scholar 

  7. AOAC (2006) Official methods of analysis. Association of Official Analytical Chemists, Gaithersburg

    Google Scholar 

  8. Baye K, Guyot J-P, Icard-Vernière C, Rochette I, Mouquet-Rivier C (2015) Enzymatic degradation of phytate, polyphenols and dietary fibers in Ethiopian injera flours: effect on iron bioaccessibility. Food Chem 174:60–67.

    CAS  Article  PubMed  Google Scholar 

  9. da Silva CS, Queiroz VAV, Simeone MLF, de Guimaraes CC, Schaffert RE, Rodrigues JAS, de Miguel RA (2012) Teores de minerais em linhagens de sorgo para uso na alimentação humana. In: CONGRESSO NACIONAL DE MILHO E SORGO, 29, Águas de Lindóia. Diversidade e Inovações Na Era Dos Transgênicos: Resumos Expandidos. Campinas: Instituto Agronômico; Sete Lagoas: Associação Brasileira de Milho e Sorgo, 6.

  10. Dicko MH, Gruppen H, Traoré AS, Voragen AGJ, van Berkel WJH (2006) Sorghum grain as human food in Africa: relevance of content of starch and amylase activities. Afr J Biotechnol 5:11

    Google Scholar 

  11. Hamad RME (2006) Preliminary Studies on the Popping Characteristics of Sorghum Grains [Al-Zaiem AI- Azhari University].

  12. Hunt JR (2003) Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am J Clin Nutr 78:633s–639s

    CAS  Article  Google Scholar 

  13. Kayodé APP (2006) Diversity, users’ perception and food processing of sorghum: implications for dietary iron and zinc supply [Wageningen University. Promotor(en): Tiny van Boekel, co-promotor(en): Rob Nout; Anita Linnemann. - Wageningen].

  14. Ma G, Jin Y, Piao J, Kok F, Guusje B, Jacobsen E (2005) Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in China. J Agric Food Chem 53:10285–10290.

    CAS  Article  PubMed  Google Scholar 

  15. NEPA-UNICAMP (2011) Tabela Brasileira de Composição de Alimentos-TACO, 4th edn. Universidade Estadual de Campinas-UNICAMP Campinas, Campinas

    Google Scholar 

  16. Nielsen AV, Meyer AS (2016) Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions. J Sci Food Agric 96:3755–3761.

    CAS  Article  PubMed  Google Scholar 

  17. Norhaizan MEJ, Nor Faizadatul Ain AW (2009) Determination of phytate, iron, zinc, calcium contents and their molar ratios in commonly consumed raw and prepared food in malaysia. Malays J Nutr 15:213–222

    PubMed  Google Scholar 

  18. Pereira TC, Hessel G (2009) Deficiência de zinco em crianças e adolescentes com doenças hepáticas crônicas. Rev Paul Pediatr 27:7

    Google Scholar 

  19. Ramos GDM, Ascheri JLR, da Silva LG, Damaso MCT, de Sousa GF, Couri S (2012) Estabilidade da fitase de Aspergillus niger 11T53A9 ao armazenamento e sua aplicação na hidrólise do ácido fítico na farinha de sorgo. Revista Brasileira de Agrociência Pelotas 18(2–4):95–106.

    Article  Google Scholar 

  20. Rebellato AP, Pacheco BC, Prado JP, Lima Pallone JA (2015) Iron in fortified biscuits: a simple method for its quantification, bioaccessibility study and physicochemical quality. Food Res Int 77:385–391.

    CAS  Article  Google Scholar 

  21. Ries EF (2010) Estudo da produção, caracterização e aplicação de nova fitase de Saccharomyces cerevisiae [Universidade Estadual de Campinas,].

  22. Sandberg AS, Carlsson NG, Svanberg U (1989) Effects of inositol Tri-, Tetra-, Penta-, and hexaphosphates on in vitro estimation of iron availability. J Food Sci 54:159–161.

    CAS  Article  Google Scholar 

  23. Sanz-Penella JM, Frontela C, Ros G, Martinez C, Monedero V, Haros M (2012) Application of bifidobacterial phytases in infant cereals: effect on phytate contents and mineral dialyzability. J Agric Food Chem 60:11787–11792.

    CAS  Article  PubMed  Google Scholar 

  24. Schober TJ, Bean SR, Boyle DL (2007) Gluten-free sorghum bread improved by sourdough fermentation: biochemical, rheological, and microstructural background. J Agric Food Chem 55:5137–5146.

    CAS  Article  PubMed  Google Scholar 

  25. Schons PF, Ries EF, Battestin V, Macedo GA (2011) Effect of enzymatic treatment on tannins and phytate in sorghum (Sorghum bicolor) and its nutritional study in rats. Int J Food Sci Technol 46:1253–1258.

    CAS  Article  Google Scholar 

  26. Tizazu S, Urga K, Belay A, Abuye C, Retta N, (2011) Effect of germination on mineral bioavailability of sorghum-based complementary foods. Afr J Food Agric Nutr Dev 11:5083–5095.

    CAS  Article  Google Scholar 

  27. Towo E, Matuschek E, Svanberg U (2006) Fermentation and enzyme treatment of tannin sorghum gruels: effects on phenolic compounds, phytate and in vitro accessible iron. Food Chem 94:369–376.

    CAS  Article  Google Scholar 

  28. Tripathi B, Chetana PK (2010) Fortification of sorghum (Sorghum vulgare) and pearl millet (Pennisetum glaucum) flour with zinc. J Trace Elem Med Biol Organ Soc Miner Trace Elem 24:257–262.

    CAS  Article  Google Scholar 

  29. Tripathi B, Platel K (2013) Feasibility in fortification of sorghum (Sorghum bicolor L. Moench) and pearl millet (Pennisetum glaucum) flour with iron. LWT-Food Sci Technol 50:220–225.

    CAS  Article  Google Scholar 

  30. Wu G, Johnson SK, Bornman JF, Bennett SJ, Singh V, Simic A, Fang Z (2016) Effects of genotype and growth temperature on the contents of tannin, phytate and in vitro iron availability of sorghum grains. PLoS ONE 11:12.

    CAS  Article  Google Scholar 

Download references


The authors are grateful to FAPESP for financial support n° 2013/16643-8, Coordination for the Improvement of Higher Education Personnel, Brazil (CAPES) Finance Code 001 for the financial support and the EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) corn and sorghum (Brazil) for donating the samples.

Author information



Corresponding author

Correspondence to Juliana A. Lima Pallone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rebellato, A.P., Orlando, E.A., Thedoropoulos, V.C.T. et al. Effect of phytase treatment of sorghum flour, an alternative for gluten free foods and bioaccessibility of essential minerals. J Food Sci Technol 57, 3474–3481 (2020).

Download citation


  • Iron
  • Zinc
  • Calcium
  • In vitro tests
  • Myo-inositol phosphate fractions
  • Sorghum flour