Pro-oxidant versus anti-oxidant effects of seeds aglycone extracts of Lepidium sativum and Eruca vesicaria Linn., in vitro, and on neutrophil nitro-oxidative functions

  • Nabila Tounsi
  • Bahia DjerdjouriEmail author
  • Ouahiba Ait Yahia
  • Aicha Belkebir
Original Article


This study evaluated the anti-inflammatory and antioxidant properties of seeds aglycone extracts from Lepidium sativum (LS) and Eruca vesicaria (EV) Linn., on oxidative damages in vitro and on neutrophil nitro-oxidative functions. The results showed that LS and EV aglycone extracts attenuated liver microsomal lipids and proteins oxidation through a potent antioxidant effect as attested by the dose dependent quenching of DPPH radical scavenging activity. LS and EV aglycone extracts inhibited dose dependently the production of superoxide anion by BALB/c mice-derived peritoneal neutrophils, whereas they slightly enhanced exocytosis of myeloperoxidase (MPO), a marker of azurophilic granules. Interestingly, only LS replenished glutathione (GSH) and nitric oxide levels, indicating a fine differential effect. This study highlighted the subtle oxidative and antioxidant capacity of LS and EV seeds aglycone extracts. These health promoting compounds could be used to finely modulate critical events involved in microbial infection, inflammation and nitro-oxidative stress.


Eruca vesicaria Lepidium sativum Glutathione Lipid peroxides Myeloperoxidase Nitro-oxidative stress 



Ascorbic acid


Eruca vesicaria


Reduced glutathione




Lipid peroxidation inhibition


Lepidium sativum








Nitric oxide


Nitric oxide synthase


NADPH oxidase2


Protein carbonyls




Reactive oxygen species


Superoxide anion



The authors are grateful to Dr Haj-Arab. H. for the identification of the plant

Compliance with ethical standards

Conflict of interest

All authors declare that there is no conflict of interest.


  1. Al-Sheddi ES, Farshori NN, Al-Oqail MM, Musarrat J, Al-Khedhairy AA, Siddiqui MA (2016) Protective effect of Lepidium sativum seed extract against hydrogen peroxide-induced cytotoxicity and oxidative stress in human liver cells (HepG2). Pharm Biol 54(2):314–321CrossRefGoogle Scholar
  2. Bell L, Oruna-Concha MJ, Wagstaff C (2015) Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: highlighting the potential for improving nutritional value of rocket crops. Food Chem 172:852–861CrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254CrossRefGoogle Scholar
  4. Bradley PP, Christensen RD, Rothstein G (1982) Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood 60(3):618–622PubMedGoogle Scholar
  5. Chang C-C, Yang M-H, Wen H-M, Chern J-C (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10(3):178–182Google Scholar
  6. Djerdjouri B, Combadière C, Pedruzzi E, Hakim J, Périanin A (1995) Contrasting effects of calyculin A and okadaic acid on the respiratory burst of human neutrophils. Eur J Mol Pharmacol 288(2):193–200CrossRefGoogle Scholar
  7. Gaweł S, Wardas M, Niedworok E, Wardas P (2004) Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomosci lekarskie (Warsaw, Poland: 1960) 57(9–10):453–455Google Scholar
  8. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem 126(1):131–138CrossRefGoogle Scholar
  9. Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39:199–218CrossRefGoogle Scholar
  10. Impellizzeri D, Esposito E, Mazzon E, Paterniti I, Di Paola R, Bramanti P et al (2011) The effects of oleuropein aglycone, an olive oil compound, in a mouse model of carrageenan-induced pleurisy. Clin Nutr 30(4):533–540CrossRefGoogle Scholar
  11. Itou T, Collins LV, Thorén FB, Dahlgren C, Karlsson A (2006) Changes in activation states of murine polymorphonuclear leukocytes (PMN) during inflammation: a comparison of bone marrow and peritoneal exudate PMN. Clin Vaccine Immunol 13(5):575–583CrossRefGoogle Scholar
  12. Jeong HG, Kim JY (2002) Induction of inducible nitric oxide synthase expression by 18 beta-glycyrrhetinic acid in macrophages. FEBS Lett 513:208–212CrossRefGoogle Scholar
  13. Jomova K, Valko M (2011) Importance of iron chelation in free radical-induced oxidative stress and human disease. Cur Pharm Des 17(31):3460–3473CrossRefGoogle Scholar
  14. Kabeya LM, Fuzissaki CN, Taleb-Contini SH, Ferreira AMC, Naal Z, Santos EO et al (2013) 7-Hydroxycoumarin modulates the oxidative metabolism, degranulation and microbial killing of human neutrophils. Chem Biol Interact 206(1):63–75CrossRefGoogle Scholar
  15. Kagan VE, Kuzmenko AI, Tyurina YY, Shvedova AA, Matsura T, Yalowich JC (2001) Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells. Cancer Res 61(21):7777–7784PubMedGoogle Scholar
  16. Kanashiro A, Souza JG, Kabeya LM, Azzolini C, Elisa A, Lucisano-Valim YM (2007) Elastase release by stimulated neutrophils inhibited by flavonoids: importance of the catechol group. Z Naturforsch C 62(5–6):357–361CrossRefGoogle Scholar
  17. Kruger P, Saffarzadeh M, Weber AN, Rieber N, Radsak M, von Bernuth H et al (2015) Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog 11(3):e1004651CrossRefGoogle Scholar
  18. Lee HG, Ahn JY, Lee AS, Shair MD (2010) Enantioselective synthesis of the lomaiviticin aglycon full carbon skeleton reveals remarkable remote substituent effects during the dimerization event. Chemistry 16(44):13058–13062CrossRefGoogle Scholar
  19. Liou G-Y, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44(5):479–496CrossRefGoogle Scholar
  20. Mayadas TN, Cullere X, Lowell CA (2014) The multifaceted functions of neutrophils. Ann Rev Pathol 9:181CrossRefGoogle Scholar
  21. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358CrossRefGoogle Scholar
  22. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2(5):270–278CrossRefGoogle Scholar
  23. Podsędek A (2007) Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT Food Sci Technol 40(1):1–11CrossRefGoogle Scholar
  24. Prestera T, Holtzclaw WD, Zhang Y, Talalay P (1993) Chemical and molecular regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci USA 90:2965–2969CrossRefGoogle Scholar
  25. Rigby KM, DeLeo FR (2012) Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol 34(2):237–259CrossRefGoogle Scholar
  26. Schenkman JB, Cinti DL (1978) Preparation of microsomes with calcium. Methods Enzymol 52:83–88CrossRefGoogle Scholar
  27. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and non protein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205CrossRefGoogle Scholar
  28. Shiba Y, Kinoshita T, Chuman H, Taketani Y, Takeda E, Kato Y et al (2008) Flavonoids as substrates and inhibitors of myeloperoxidase: molecular actions of aglycone and metabolites. Chem Res Toxicol 8:1600–1609CrossRefGoogle Scholar
  29. Suzuki YJ, Carini M, Butterfield DA (2010) Protein carbonylation. Antioxid Redox Signal 12(3):323–325CrossRefGoogle Scholar
  30. Szabó C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Rev Drug Discov 6(8):662–680CrossRefGoogle Scholar
  31. Thippeswamy T, McKay J, Quinn J, Morris R (2006) Nitric oxide, a biological double-faced janus-Is this good or bad? Histol Histopathol 21(4):445–458PubMedGoogle Scholar
  32. Utrera M, Estévez M (2013) Impact of trolox, quercetin, genistein and gallic acid on the oxidative damage to myofibrillar proteins: the carbonylation pathway. Food Chem 141(4):4000–4009CrossRefGoogle Scholar
  33. Vivot E, de Dios Muñoz J, del Carmen Cruañes M, Cruañes MJ, Tapia A, Hirschmann GS et al (2001) Inhibitory activity of xanthine-oxidase and superoxide scavenger properties of Inga verna subsp. affinis. Its morphological and micrographic characteristics. J Ethnopharmacol 76(1):65–71CrossRefGoogle Scholar
  34. Yan L-J, Traber MG, Kobuchi H, Matsugo S, Tritschler HJ, Packer L (1996) Efficacy of hypochlorous acid scavengers in the prevention of protein carbonyl formation. Arch Biochem Biophys 327(2):330–334CrossRefGoogle Scholar
  35. Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51CrossRefGoogle Scholar
  36. Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y et al (2016) ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev 2016:4350965. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  • Nabila Tounsi
    • 1
  • Bahia Djerdjouri
    • 1
    Email author
  • Ouahiba Ait Yahia
    • 2
  • Aicha Belkebir
    • 2
  1. 1.Laboratory of Cellular and Molecular Biology, Faculty of Biological SciencesUniversity of Sciences and Technology, Houari BoumedieneAlgiersAlgeria
  2. 2.Laboratory of Plant Physiology, Faculty of Biological SciencesUniversity of Sciences and Technology, Houari BoumedieneAlgiersAlgeria

Personalised recommendations