Skip to main content
Log in

Determination of sensitivity of some food pathogens to spice extracts

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Spices are primarily used as flavor enhancers and have attracted attention as natural food preservatives since their antimicrobial effects were determined. In the present study, the antimicrobial effects, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values on 5 important food-borne pathogenic bacteria were investigated in 20 different types of spices that are not commonly used. The results indicated that Hibiscus (Hibiscus sabdariffa) was the most effective against Listeria monocytogenes (26.37 mm zone diameter) and Staphylococcus aureus (24.15 mm zone diameter) (P < 0.05) followed by the chebulic myrobalan (Terminalia chebula) (21.34 ± 0.35 and 23.85 ± 1.69 mm diameter zone respectively) (P < 0.05). Likewise, Hibiscus (H. sabdariffa) showed the lowest MICs and MBCs concentration values on five important food-borne pathogens (L. monocytogenes) MIC; 0.187 mg/L, MBC; 0. Thus, this study determined that spices with antimicrobial activities can be used as natural preservatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdallah EM (2016) Antibacterial efficiency of the Sudanese roselle (Hibiscus sabdariffa L.), a famous beverage from Sudanese folk medicine. J Intercult Ethnopharmacol 5(2):186–190. https://doi.org/10.5455/jice.20160320022623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akarca G (2019) Composition and antibacterial effect on food borne pathogens of Hibiscus surattensis L. calyces essential oil. Ind Crops Prod 137:285–289. https://doi.org/10.1016/j.indcrop.2019.05.043

    Article  CAS  Google Scholar 

  • Amyes S, Miles SR, Thomson CJ, Tillotson G (1996) Antimicrobial chemotherapy: pocketbook. CRC Press, London

    Google Scholar 

  • Anonymous (2015a) SPSS Version 23.0.0.0 for Windows SPSS Inc. Shicago IL,USA

  • Anonymous (2015b) CLSI (Clinical and Laboratory Standards Institute), Zone diameter and minimal inhibitory concentration (MIC) Standards

  • Anonymous (2018) Eucast, European Committee on antimicrobial susceptibility testing. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf. Accessed 28 Apr 2018

  • Bauer AW, Perry DM, Kirby WMM (1959) Single disc antibiotic sensitivity testing of Staphylococci. AMA Arch Intern Med 104:208–216

    Article  CAS  Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 36:493–496

    Article  Google Scholar 

  • Bonyadian M, Moshtaghi H (2008) Bactericidal activity of some plants essential oils against Bacillus cereus, Salmonella typhimurium, Listeria monocytogenes and Yersinia enterocolitica. Res J Microbiol 3(11):648–653. https://doi.org/10.1016/j.indcrop.2012.02.042

    Article  CAS  Google Scholar 

  • Borrás-Linares I, Fernández-Arroyoa S, Arráez-Romana D, Palmeros-Suárezc PA, Del Val-Díazc R, Andrade-Gonzálesc I, Fernández-Gutiérreza A, Gómez-Leyvac JF, Segura-Carreteroa A (2015) Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Ind Crop Prod 69:385–394. https://doi.org/10.1016/j.indcrop.2015.02.053

    Article  CAS  Google Scholar 

  • Brul S, Coote P (1999) Preservative agents in foods. Mode of action and microbial resistance mechanisms. Int J Food Microbiol 50:1–17

    Article  CAS  Google Scholar 

  • By Aamer AA, Abdul-Hafeez MM, Sayed SM (2015) Minimum inhibitory and bactericidal concentrations (MIC and MBC) of honey and bee propolis against multidrug resistant (MDR) Staphylococcus Spp. isolated from bovine clinical mastitis. Glob J Sci Front Res D Agric Vet 15(2):1–9

    Google Scholar 

  • Cerit LS (2008) Antimicrobial properties of some spice volatile oils. Msc thesis. Pamukkale university graduate school of natural and applied science. Denizli, Turkey

  • Chikezie IO (2017) Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. Afr J Microbiol Res 11(23):977–980

    Article  Google Scholar 

  • Cusato S, Gamerioz AH, Sant’Ana AS, Corrassin CH, Cruz AG, de Oliveira CAF (2014) Assessing the costs involved in the implementation of GMP and HACCP in a small dairy factory. Qual Assur Saf Crop 6(2):135–139. https://doi.org/10.3920/QAS2012.0195

    Article  Google Scholar 

  • De Souza EL, Stamford T, Lima ED, Trajano VN, Barbosa JM (2005) Antimicrobial effectiveness of spices: an approach for use in food conservation systems. Braz Arch Biol Technol 48:549–558

    Article  Google Scholar 

  • Edwards-Jones V (2013) Alternative antimicrobial approaches to fighting multidrug-resistant ınfections. In: Rai M, Kon K (eds) Fighting multidrug resistance with herbal extracts, essential oils and their components. Elsevier, Amsterdam, pp 1–9

    Google Scholar 

  • Fernández-Arroyo S, Herranz-López M, Beltrán-Debón R, Borrás-Linares I, Barrajón-Catalán E, Joven J, Fernández-Gutiérrez A, Segura-Carretero A, Micol V (2012) Bioavailability study of a polyphenol-enriched extract from Hibiscus sabdariffa in rats and associated antioxidant status. Mol Nutr Food Res 56:1590–1595. https://doi.org/10.1002/mnfr.201200091

    Article  CAS  PubMed  Google Scholar 

  • French GL (2006) Bactericidal agents in the treatment of MRSA infections the potential role of daptomycin. J Antimicrob Chemother 58(6):1107–1117

    Article  CAS  Google Scholar 

  • Gomez CCB, Lemos GFC, Silva MC, Hora IMC, Cruz AG (2014) Training of food handlers in a hotel: tool for promotion of the food safety. J Food Saf 34:218–223. https://doi.org/10.1111/jfs.12116

    Article  Google Scholar 

  • Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86:985–990

    Article  CAS  Google Scholar 

  • ISO (1999) International Standard Organization, 6888-1, Horizontal method for the enumeration of coagulase-positive Staphylococci technique using baird parker agar medium

  • ISO (2001a) International Standard Organization, 16649-1:2001, Microbiology of food and animal feeding stuffs—horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli—Part 1: colony-count technique at 44 degrees C using membranes and 5-bromo-4-chloro-3-indolyl beta-d-glucuronide

  • ISO (2001b) International Standard Organization, 16649-2:2001, Microbiology of food and animal feeding stuffs—horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli—Part 2: colony-count technique at 44 degrees C using 5-bromo-4-chloro-3-indolyl beta-d-glucuronide

  • ISO (2015) International Standard Organization, 16649-3:2015, Microbiology of the food chain—horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli—Part 3: Detection and most probable number technique using 5-bromo-4-chloro-3-indolyl-β-d-glucuronide

  • ISO (2017a) International Standard Organization, 6579-1:2017, Horizontal method for the detection, enumeration and serotyping of Salmonella

  • ISO (2017b) International Standard Organization, 21528-1:2017, Microbiology of the food chain—horizontal method for the detection and enumeration of Enterobacteriaceae—Part 1: detection of Enterobacteriaceae

  • ISO (2017c) International Standard Organization, 21528-2:2017, Microbiology of the food chain—horizontal method for the detection and enumeration of Enterobacteriaceae—part 2: colony-count technique

  • ISO (2017d) International Standard Organization, 11290-1:2017, Microbiology of the food chain, horizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: detection method

  • ISO (2017e) International Standard Organization, 11290-2:2017, Microbiology of the food chain, horizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp.—Part 2: enumeration method

  • Kim J, Marshall MR, Wei CI (1995) Antibacterial activity of some essential oil components against five foodborne pathogens. J Agric Food Chem 43(11):2839–2845

    Article  CAS  Google Scholar 

  • Kustes S (2013) The spice of life. Realfood University Cook Book, USA

  • Miladi H, Zmantar T, Chaabouni Y, Fedhila K, Bakhrouf A, Mandouani K, Chaieb K (2016) Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens. Microb Pathog 99:95–100

    Article  CAS  Google Scholar 

  • Nakahara K, Alzoreky NS (2003) Antibacterial activity of extracts from some edible plants commonly consumed in Asia. Food Microbiol 80:223–230

    Article  Google Scholar 

  • Peter KV (2001) Introduction. In: Peter KV (ed) Handbook of herbs and spices, vol 1. CRC Press, Washington, pp 1–6

    Google Scholar 

  • Raeisi M, Tajik H, Razavi Roohani SM, Maham M, Moradi M, Hajimohammadi B, Naghili H, Hashemi M, Mehdizadeh T (2012) Essential oil of tarragon (Artemisis dracunculus) antibacterial activity on Staphylococcus aureus and Escherichia coli in culture media and Iranian white cheese. Iran J Microbiol 4(1):3–34

    Google Scholar 

  • Sagdic O, Kuşçu A, Özcan M, Özçelik S (2002) Effects of Turkish spice extracts at various concentrations on the growth E. coli O157:H7. Food Microbiol 1:473–480

    Article  Google Scholar 

  • Silva F, Domingues FC (2017) Antimicrobial activity of coriander oil and its effectiveness as food preservative. Crit Rev Food Sci Nutr 57:35–47

    Article  CAS  Google Scholar 

  • Tajkarimi MM, Ibrahim SA, Cliver DO (2010) Antimicrobial herb and spice compounds in food. Food Control 21:1199–1218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökhan Akarca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akarca, G., Tomar, O., Güney, İ. et al. Determination of sensitivity of some food pathogens to spice extracts. J Food Sci Technol 56, 5253–5261 (2019). https://doi.org/10.1007/s13197-019-03994-1

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-03994-1

Keywords

Profiles

  1. Gökhan Akarca