Skip to main content

Advertisement

Log in

Extraction of bioactive ingredients from fruiting bodies of Antrodia cinnamomea assisted by high hydrostatic pressure

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to use high hydrostatic pressure treatment to enhance the extraction efficiency of the active components from the fruiting bodies of Antrodia cinnamomea, and compare with those obtained by shake and ultrasonic extraction methods. The conditions of high pressure extraction (HPE) at 600 MPa, a liquid/solid ratio of 40:1, and 3 min of treatment yielded triterpenoids and adenosine concentrations of 410.41 mg/100 mL and 0.47 mg/100 mL, respectively, which did not differ significantly from those with the two other treatments—shake extraction at 180 rpm for 8 h and ultrasonic extraction at 50 Hz for 60 min. The HPE extracts significantly attenuated reactive oxygen species, nitric oxide and prostaglandin E2 production in lipopolysaccharide-stimulated RAW 264.7 cells than shake extracts did. SEM micrographs revealed that high-pressure caused physical morphological damage to the mycelium of fruiting bodies, such as distortion and disruption of mycelial cells, and increased the mass-transfer effectiveness of the solvent and solute. HPE can be employed as an efficient extraction technique for production of bioactive ingredients that might have a potential application in food and related industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Briones-Labarca V, Plaza-Morales M, Giovagnoli-Vicuña C, Jamett F (2015) High hydrostatic pressure and ultrasound extractions of antioxidant compounds, sulforaphane and fatty acids from Chilean papaya (Vasconcellea pubescens) seeds: effects of extraction conditions and methods. LWT Food Sci Technol 60:525–534

    Article  CAS  Google Scholar 

  • Chang TT, Chou WN (1995) Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycol Res 99:756–758

    Article  Google Scholar 

  • Chang CY, Leu MY, Pan TM (2005) Determination of adenosine, cordycepin and ergosterol contents in cultivated Antrodia camphorata by HPLC method. J Food Drug Anal 13:338–342

    CAS  Google Scholar 

  • Chang CJ, Lu CC, Lin CS, Martel J, Ko YF, Ojcius DM, Wu TR, Tsai YH, Yeh TS, Lu JJ, Lai HC, Young JD (2018) Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice. Int J Obes 42:231–243

    Article  Google Scholar 

  • Chen R, Meng F, Zhang S, Liu Z (2009) Effects of ultrahigh pressure extraction conditions on yields and antioxidant activity of ginsenoside from ginseng. Sep Purif Technol 66:340–346

    Article  CAS  Google Scholar 

  • Cheng JJ, Huang NK, Lur HS, Kuo CI, Lu MK (2009) Characterization and biological functions of sulfated polysaccharides from sulfated-salt treatment of Antrodia cinnamomea. Process Biochem 44:453–459

    Article  CAS  Google Scholar 

  • Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B (2008) Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innov Food Sci Emerg Technol 9:85–91

    Article  CAS  Google Scholar 

  • Corrales M, García AF, Butz P, Tauscher B (2009) Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J Food Eng 90:415–421

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Geethangili M, Tzeng YM (2011) Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid Based Complement Altern Med 2011:1–17

    Article  Google Scholar 

  • Hu W, Guo T, Jiang WJ, Dong GL, Chen DW, Yang SL, Li HR (2015) Effects of ultrahigh pressure extraction on yield and antioxidant activity of chlorogenic acid and cynaroside extracted from flower buds of Lonicera japonica. Chin J Nat Med 13:445–453

    CAS  PubMed  Google Scholar 

  • Huang HW, Hsu CP, Yang BB, Wang CY (2013) Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci Technol 33:54–62

    Article  CAS  Google Scholar 

  • Lee AR, Choi SH, Choi HW, Ko JH, Kim W, Kim DO, Kim BY, Baik MY (2014) Optimization of ultra high pressure extraction (UHPE) condition for puffed ginseng using response surface methodology. Food Sci Biotechnol 23:1151–1157

    Article  CAS  Google Scholar 

  • Liang MT, Liang RC, Huang LR, Liang KY, Chien YL, Liao JY (2014) Supercritical fluids as the desorbent for simulated moving bed-application to the concentration of triterpenoids from Taiwanofugus camphorate. J Taiwan Inst Chem Eng 45:1225–1232

    Article  CAS  Google Scholar 

  • Lien HM, Chiu CH, Chen CC, Chang WL, Chyau CC, Peng RY (2014) Comparison of the apoptotic effects of supercritical fluid extracts of Antrodia cinnamomea mycelia on hepatocellular carcinoma cells. Molecules 19:9033–9050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu ZM, Gong JS, He Z, Xu HY, Dou WF, Shi JS (2011) Optimization of extraction of total triterpenoids from submergedly cultured Antrodia camphorata using response surface methodology. Nat Prod Res 23:946–951

    CAS  Google Scholar 

  • Ma TW, Lai Y, Yang FC (2014) Enhanced production of triterpenoid in submerged cultures of Antrodia cinnamomea with the addition of citrus peel extract. Bioprocess Biosyst Eng 37:2251–2261

    Article  CAS  PubMed  Google Scholar 

  • Naghshineh M, Olsen K, Georgiou CA (2013) Sustainable production of pectin from lime peel by high hydrostatic pressure treatment. Food Chem 136:472–478

    Article  CAS  PubMed  Google Scholar 

  • Prasad KN, Hao J, Shi J, Liu T, Li J, Wei X, Qiu S, Xue S, Jiang Y (2009a) Antioxidant and anticancer activities of high pressure-assisted extract of longan (Dimocarpus longan Lour.) fruit pericarp. Innov Food Sci Emerg Technol 10:413–419

    Article  CAS  Google Scholar 

  • Prasad KN, Yang B, Zhao M, Wang BS, Chen F, Jiang Y (2009b) Effects of high-pressure treatment on the extraction yield, phenolic content and antioxidant activity of litchi (Litchi chinensis Sonn.) fruit pericarp. Int J Food Sci Technol 44:960–966

    Article  CAS  Google Scholar 

  • Prasada KN, Yang B, Zhao M, Wei X, Jiang Y, Chen F (2009) High pressure extraction of corilagin from longan (Dimocarpus longan Lour.) fruit pericarp. Sep Purif Technol 70:41–45

    Article  CAS  Google Scholar 

  • Tu WC (2008) Comparison of techniques for the extraction of active components from timber cultivated or media cultivated Antrodia camphorate. Master thesis, Department of Bioindustry Technology, Dayeh University, Taiwan

  • Wang L, Weller C (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312

    Article  CAS  Google Scholar 

  • Wen CL, Chang CC, Huang SS, Kuo CL, Hsu SL, Deng JS, Huang GJ (2011) Anti-inflammatory effects of methanol extract of Antrodia cinnamomea mycelia both in vitro and in vivo. J Ethnopharmacol 137:575–584

    Article  PubMed  Google Scholar 

  • Wu YS, Chen SN (2016) Extracted triterpenes from Antrodia cinnamomea reduce the inflammation to promote the wound healing via the STZ inducing hyperglycemia-diabetes mice model. Front Pharmacol 7:154–164

    PubMed  PubMed Central  Google Scholar 

  • Wu MD, Cheng MJ, Wang WY, Huang HC, Yuan GF, Chen JJ, Chen IS, Wang BC (2011) Antioxidant activities of extracts and metabolites isolated from the fungus Antrodia cinnamomea. Nat Prod Res 25:1488–1496

    Article  CAS  PubMed  Google Scholar 

  • Xi J (2006) Effect of high pressure processing on the extraction of lycopene in tomato pastewaste. Chem Eng Technol 29:736–739

    Article  CAS  Google Scholar 

  • Xi J (2009) Caffeine extraction from green tea leaves assisted by high pressure processing. J Food Eng 94:105–109

    Article  CAS  Google Scholar 

  • Xi J (2013) High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials. Crit Rev Food Sci Nutr 53:837–852

    Article  CAS  Google Scholar 

  • Xi J (2015) Ultrahigh pressure extraction of bioactive compounds from plants—a review. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2013.874327

    Article  Google Scholar 

  • Xi J, Shen D, Li Y, Zhang R (2011) Micromechanism of ultrahigh pressure extraction of active ingredients from green tea leaves. Food Control 22:1473–1476

    Article  CAS  Google Scholar 

  • Xi J, He L, Yan L (2015) Kinetic modeling of pressure-assisted solvent extraction of polyphenols from green tea in comparison with the conventional extraction. Food Chem 166:287–291

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Xi J, Wang C (2005) High hydrostatic pressure extraction of flavonoids from propolis. J Chem Technol Biotechnol 80:50–54

    Article  CAS  Google Scholar 

  • Zhang S, Chen R, Wang C (2007) Experiment study on ultrahigh pressure extraction of Ginsenosides. J Food Eng 79:1–5

    Article  CAS  Google Scholar 

  • Zhang Y, Wang Z, Li D, Zang W, Zhu H, Wu P, Mei Y, Liang Y (2018) A polysaccharide from Antrodia cinnamomea mycelia exerts antitumor activity through blocking of TOP1/TDP1-mediated DNA repair pathway. Int J Biol Macromol 120:1551–1560

    Article  CAS  PubMed  Google Scholar 

  • Zhao SS, Leung SY (2010) Quality evaluation of mycelial Antrodia camphorata using high-performance liquid chromatography (HPLC) coupled with diode array detector and mass spectrometry (DAD–MS). Chin Med 5:4–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Liu F, Xu M, Lin X, Wang X (2012) Ultrahigh pressure extraction of lignan compounds from Dysosma versipellis and purification by high-speed counter-current chromatography. J Chromatogr B 905:145–149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Ministry of Science and Technology, MOST 107-2221-E-002-110-MY2, Taiwan, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Yi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HW., Chen, BY. & Wang, CY. Extraction of bioactive ingredients from fruiting bodies of Antrodia cinnamomea assisted by high hydrostatic pressure. J Food Sci Technol 56, 3988–3997 (2019). https://doi.org/10.1007/s13197-019-03867-7

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-03867-7

Keywords

Navigation