Skip to main content
Log in

Evaluation of phenolic antioxidant-linked in vitro bioactivity of Peruvian corn (Zea mays L.) diversity targeting for potential management of hyperglycemia and obesity

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Peruvian corn biodiversity is one of the highest in the world and may represent an important natural source of health relevant phenolic bioactive compounds whose potential needs to be investigated. This study investigated twenty-two Peruvian corn samples corresponding to five corn races (Arequipeño, Cabanita, Kculli, Granada and Coruca) in relation to their total phenolic contents (TPC), anthocyanin contents, Ultra-Performance Liquid Chromatography (UPLC) phenolic profiles and antioxidant capacity (ABTS and ORAC methods). Subsequently using both free and cell-wall bound phenolic fractions their health relevance targeting hyperglycemia (α-glucosidase and α-amylase inhibition) and obesity (lipase inhibition) potentials was evaluated using in vitro assay models. Antioxidant capacity and TPC were high in bound fractions from yellow-colored races in contrast to the purple-colored race (Kculli) which had high TPC (mainly anthocyanins) and antioxidant capacity in the free form. The major phenolic acids detected by UPLC were ferulic and p-coumaric acids. High α-glucosidase (32.5–76.1%, 25 mg sample dose) and moderate α-amylase inhibitory activities (13.6–29.0%, 250 mg sample dose) were found in all free fractions, but only samples from the Kculli race had lipase inhibitory activity (58.45–92.16%, 12.5 mg sample dose). Principal component analysis revealed that the variability of data was affected by the race and the α-glucosidase and lipase inhibitory activities positively correlated with anthocyanins and antioxidant capacity. Some accessions of Kculli, Granada and Cabanita races are promising for future breeding strategies focused on the development of improved corn varieties targeted for the design of functional foods relevant for hyperglycemia and obesity prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Aal E-SM, Hucl P (1999) A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem 76:350–354

    Article  CAS  Google Scholar 

  • Ademiluyi AO, Oboh G (2013) Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Exp Toxicol Pathol 65:305–309

    Article  CAS  PubMed  Google Scholar 

  • Amador-Rodríguez KY, Pérez-Cabrera LE, Guevara-Lara F, Chávez-Vela NA, Posadas-Del Río FA, Silos-Espino H, Martínez-Bustos F (2019) Physicochemical, thermal, and rheological properties of nixtamalized blue-corn flours and masas added with huitlacoche (Ustilago maydis) paste. Food Chem 278:601–608

    Article  CAS  PubMed  Google Scholar 

  • Arnao M, Cano A, Acosta M (2001) The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 73:239–244

    Article  CAS  Google Scholar 

  • Bhandari MR, Jong-Anurakkun N, Hong G, Kawabata J (2008) α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem 106:247–252

    Article  CAS  Google Scholar 

  • Bischoff H (1994) Pharmacology of alpha-glucosidase inhibition. Eur J Clin Invest 24:3–10

    Article  CAS  PubMed  Google Scholar 

  • De la Garza AL, Milagro FI, Boque N, Campión J, Martínez JA (2011) Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med 77:773–785

    Article  CAS  PubMed  Google Scholar 

  • De la Parra C, Saldivar SOS, Liu RH (2007) Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. J Agric Food Chem 55:4177–4183

    Article  CAS  PubMed  Google Scholar 

  • Filippatos T, Derdemezis C, Gazi I, Nakou E, Mikhailidis D, Elisaf M (2008) Orlistat-associated adverse effects and drug interactions: a critical review. Drug Saf 31:53–65

    Article  CAS  PubMed  Google Scholar 

  • Giordano D, Beta T, Reyneri A, Blandino M (2017) Changes in the phenolic acid content and antioxidant activity during kernel development of corn (Zea mays L.) and relationship with mycotoxin contamination. Cereal Chem 94:315–324

    Article  CAS  Google Scholar 

  • González-Muñoz A, Quesille-Villalobos AM, Fuentealba C, Shetty K, Ranilla LG (2013) Potential of Chilean native corn (Zea mays L.) accessions as natural sources of phenolic antioxidants and in vitro bioactivity for hyperglycemia and hypertension management. J Agric Food Chem 61:10995–11007

    Article  CAS  PubMed  Google Scholar 

  • Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int 2015:1–14

    Article  Google Scholar 

  • Guo W, Beta T (2013) Phenolic acid composition and antioxidant potential of insoluble and soluble dietary fibre extracts derived from select whole-grain cereals. Food Res Int 51:518–525

    Article  CAS  Google Scholar 

  • Harakotr B, Suriharn B, Scott MP, Lertrat K (2015) Genotypic variability in anthocyanins, total phenolics, and antioxidant activity among diverse waxy corn germplasm. Euphytica 203:237–248

    Article  CAS  Google Scholar 

  • Hsu C-L, Yen G-C (2007) Phenolic compounds: evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. Mol Nutr Food Res 52:53–61

    Article  Google Scholar 

  • Lee CH, Garcia HS, Parkin KL (2010) Bioactivities of kernel extracts of 18 strains of maize (Zea mays L.). J Food Sci 75:C667–C672

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Martínez LX, Oliart-Ros RM, Valerio-Alfaro G, Lee C-H, Parkin KL, Garcia HS (2009) Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT Food Sci Technol 42:1187–1192

    Article  CAS  Google Scholar 

  • Montilla EC, Hillebrand S, Antezana A, Winterhalter P (2011) Soluble and bound phenolic compounds in different Bolivian purple corn (Zea mays L.) cultivars. J Agric Food Chem 59:7068–7074

    Article  CAS  Google Scholar 

  • Nakai M, Fukui Y, Asami S, Toyoda-Ono Y, Iwashita T, Shibata H, Mitsunaga T, Hashimoto F, Kiso Y (2005) Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J Agric Food Chem 53:4593–4598

    Article  CAS  PubMed  Google Scholar 

  • Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescence probe. J Agric Food Chem 49:4619–4626

    Article  CAS  Google Scholar 

  • Paucar-Menacho LM, Martínez-Villaluenga CM, Dueñas M, Frias J, Peñas E (2017) Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT Food Sci Technol 76:236–244

    Article  CAS  Google Scholar 

  • Ramos-Escudero F, Muñoz AM, Alvarado-Ortiz C, Alvarado A, Yáñez JA (2012) Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress isolated mouse organs. J Med Food 15:206–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranilla LG, Christopher A, Sarkar D, Shetty K, Chirinos R, Campos D (2017) Phenolic composition and evaluation of the antimicrobial activity of free and bound phenolic fractions of a Peruvian corn (Zea mays L.) accession. J Food Sci 82:2968–2976

    Article  CAS  Google Scholar 

  • Serratos JA (2009) El origen y la diversidad del maíz en el continente americano. https://www.greenpeace.org/archive-mexico/Global/mexico/report/2009/3/el-origen-y-la-diversidad-del.pdf. Accessed 10 Feb 2019

  • Sevilla R, Chura J (1999) Country reports. Peru. In: Taba S (ed) Latin American Maize Germplasm conservation: core subset development and regeneration. Proceedings of a workshop held at CIMMYT, 1–5 June 1998, Mexico D.F. International Maize and Wheat Improvement Center (CIMMYT), Mexico, pp 38–41

    Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult 16:144–158

    CAS  Google Scholar 

  • Thakur S, Singh N, Kaur A, Singh B (2017) Effect of extrusion on physicochemical properties, digestibility, and phenolic profiles of grit fractions obtained from dry milling of normal and waxy corn. J Food Sci 82:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Trehan S, Singh N, Kaur A (2018) Characteristics of white, yellow, purple corn accessions: phenolic profile, textural, rheological properties and muffin making potential. J Food Sci Technol 55:2334–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Sang W, Zhou M, Ren G (2010) Antioxidant and α-glucosidase inhibitory activity of colored grains in China. J Agric Food Chem 58:770–774

    Article  CAS  PubMed  Google Scholar 

  • Yao SL, Xu Y, Zhang YY, Lu YH (2013) Black rice and anthocyanins induce inhibition of cholesterol absorption in vitro. Food Funct 4:1602–1608

    Article  CAS  Google Scholar 

  • Zhang R, Huang L, Deng Y, Chi J, Zhang Y, Wei Z, Zhang M (2017) Phenolic content and antioxidant activity of eight representative sweet corn varieties grown in South China. Int J Food Proper 20:3043–3055

    Article  CAS  Google Scholar 

  • Zilic S, Serpen A, Akillioglu G, Gokmen V, Vancetovic J (2012) Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. J Agric Food Chem 60:1224–1231

    Article  CAS  PubMed  Google Scholar 

  • Zivy M, Wienkoop S, Renaut J, Pinheiro C, Goulas E, Carpentier S (2015) The quest for tolerant varieties: the importance of integrating “omics” techniques to phenotyping. Front Plant Sci 6:448

    Article  PubMed  PubMed Central  Google Scholar 

  • Zulueta A, Esteve MJ, Frígola A (2009) ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem 114:310–316

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Maize Research Program (Agrarian University of La Molina, UNALM) for providing the evaluated corn accessions and for the assistance with the race classification of corn samples collected from the region of Arequipa-Peru. We also thank engineer Jorge Medina (Instituto Nacional de Innovación Agraria INIA-Peru) for the assistance with the corn collection in Arequipa (Peru). This research was supported by the Programa Nacional de Innovación para la Competitividad y Productividad (Innóvate Perú), under the Contract 170-PNICP-BRI-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Gálvez Ranilla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranilla, L.G., Huamán-Alvino, C., Flores-Báez, O. et al. Evaluation of phenolic antioxidant-linked in vitro bioactivity of Peruvian corn (Zea mays L.) diversity targeting for potential management of hyperglycemia and obesity. J Food Sci Technol 56, 2909–2924 (2019). https://doi.org/10.1007/s13197-019-03748-z

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-03748-z

Keywords

Navigation