Advertisement

Differentiation of honeydew honeys and blossom honeys: a new model based on colour parameters

  • Greici Bergamo
  • Siluana Katia Tischer Seraglio
  • Luciano Valdemiro Gonzaga
  • Roseane Fett
  • Renata Dias de Mello Castanho Amboni
  • Carolinne Odebrecht Dias
  • Ana Carolina Oliveira CostaEmail author
Short Communication
  • 30 Downloads

Abstract

The present study aimed to differentiate Mimosa scabrella Bentham (bracatinga) honeydew honeys from blossom honeys, with and without addition of heat treatment, and bracatinga honeydew honeys adulterated with blossom honeys (5, 15 and 25% of blossom honeys), using chromatic characterization associated with chemometric analysis. Bracatinga honeydew honeys presented unusual chromatic characteristics which allowed differentiation of blossom honeys by principal components analysis. Additionally, a classification model was developed in order to establish clear rules that characterize each group of honey. The proposed model correctly classified bracatinga honeydew honey and blossom honey samples, with and without heat treatment. Only two samples adulterated with 5% blossom honey were misclassified. The chromatic analysis associated with chemometric analysis showed promising perspectives for its exploitation being able to be used for screening and selection of bracatinga honeydew honey, fresh or thermally treated as well as fraud detection.

Keywords

Data-mining C&RT Classification and regression tree Principal component analysis Floral honey Botanical discrimination CIELAB 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Authors also wish to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil (CNPq), the Fundação de Amparo à Pesquisa do Estado de Santa Catarina - Brasil (FAPESC) and the participating beekeepers from the mountain plateau region of Santa Catarina state.

Supplementary material

13197_2019_3737_MOESM1_ESM.docx (34 kb)
Supplementary material 1 (DOCX 34 kb)
13197_2019_3737_MOESM2_ESM.docx (24 kb)
Supplementary material 2 (DOCX 23 kb)
13197_2019_3737_MOESM3_ESM.docx (35 kb)
Supplementary material 3 (DOCX 35 kb)
13197_2019_3737_MOESM4_ESM.docx (22 kb)
Supplementary material 4 (DOCX 22 kb)
13197_2019_3737_MOESM5_ESM.docx (30 kb)
Supplementary material 5 (DOCX 30 kb)

References

  1. Azevedo MS, Seraglio SKT, Rocha G, Balderas CB, Piovezan M, Gonzaga LV, de Barcellos Falkenberg D, Fett R, de Oliveira MAL, Costa ACO (2017) Free amino acid determination by GC-MS combined with a chemometric approach for geographical classification of bracatinga honeydew honey (Mimosa scabrella Bentham). Food Control 78:383–392.  https://doi.org/10.1016/j.foodcont.2017.03.008 CrossRefGoogle Scholar
  2. Belay A, Solomon WKK, Bultossa G, Adgaba N, Melaku S (2015) Botanical origin, colour, granulation, and sensory properties of the Harenna forest honey, Bale, Ethiopia. Food Chem 167:213–219.  https://doi.org/10.1016/j.foodchem.2014.06.080 CrossRefGoogle Scholar
  3. Bell JF (1996) Application of classification trees to the habitat preference of upland birds. J Appl Stat 23(2–3):349–360.  https://doi.org/10.1080/02664769624297 CrossRefGoogle Scholar
  4. Bergamo G, Seraglio SKT, Gonzaga LV, Fett R, Costa ACO (2018) Mineral profile as a potential parameter for verifying the authenticity of bracatinga honeydew honeys. LWT 97:390–395.  https://doi.org/10.1016/J.LWT.2018.07.028 CrossRefGoogle Scholar
  5. Bertoncelj J, Dobersek U, Jamnik M, Golob T (2007) Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem 105(2):822–828.  https://doi.org/10.1016/j.foodchem.2007.01.060 CrossRefGoogle Scholar
  6. Castro-Vázquez L, Díaz-Maroto MC, Pérez-Coello MS (2006) Volatile composition and contribution to the aroma of spanish honeydew honeys Identification of a new chemical marker. J Agric Food Chem 54(13):4809–4813.  https://doi.org/10.1021/jf0604384 CrossRefGoogle Scholar
  7. CIE (2004) Colorimetry, 3rd edn. Commission Internationale de I’Eclairage, ViennaGoogle Scholar
  8. dos Wolff VR, Witter S, Lisboa BB (2015) Reporte de Stigmacoccus paranaensis Foldi (Hemiptera, Stigmacoccidae), insecto escama asociado con la producción de miel de mielato en Rio Grande do Sul, Brasil. Insecta Mundi 434:1–7Google Scholar
  9. Escriche I, Visquert M, Juan-Borrás M, Fito P (2009) Influence of simulated industrial thermal treatments on the volatile fractions of different varieties of honey. Food Chem 112(2):329–338.  https://doi.org/10.1016/j.foodchem.2008.05.068 CrossRefGoogle Scholar
  10. Escriche I, Kadar M, Juan-Borrás M, Domenech E (2014) Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment. Food Chem 142:135–143.  https://doi.org/10.1016/j.foodchem.2013.07.033 CrossRefGoogle Scholar
  11. Escuredo O, Dobre I, Fernández-González M, Seijo MC (2014) Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem 149:84–90.  https://doi.org/10.1016/j.foodchem.2013.10.097 CrossRefGoogle Scholar
  12. European Commission (2002) European Commission council directive 2001/110/EC of 20 December 2001 relating to honey. Off J Eur Commun 10:47Google Scholar
  13. European Commission (2013) Final report summary—TOPHONEY (enhancing the quality attributes of processed honey and avoiding its crystallisation by the application of a non-thermal treatment process). http://cordis.europa.eu/result/rcn/149416_en.html
  14. González-Miret ML, Terrab A, Hernanz D, Fernández-Recamales MÁA, Heredia FJ (2005) Multivariate correlation between color and mineral composition of honeys and by their botanical origin. J Agric Food Chem 53(7):2574–2580.  https://doi.org/10.1021/jf048207p CrossRefGoogle Scholar
  15. Jha SN (ed) (2010) Colour measurements and modeling. In: Nondestructive evaluation of food quality. Springer, Berlin, pp 17–40.  https://doi.org/10.1007/978-3-642-15796-7_2 CrossRefGoogle Scholar
  16. Kuś PM, van Ruth S (2015) Discrimination of Polish unifloral honeys using overall PTR-MS and HPLC fingerprints combined with chemometrics. LWT Food Sci Technol 62(1):69–75.  https://doi.org/10.1016/j.lwt.2014.12.060 CrossRefGoogle Scholar
  17. Madejczyk M, Baralkiewicz D (2008) Characterization of Polish rape and honeydew honey according to their mineral contents using ICP-MS and F-AAS/AES. Anal Chim Acta 617(1–2):11–17.  https://doi.org/10.1016/j.aca.2008.01.038 CrossRefGoogle Scholar
  18. Mazuchowski JZ, Rech TD, Toresan L (2014) Bracatinga, Mimosa scabrella Bentham: Cultivo, manejo e usos da espécie. Epagri, FlorianópolisGoogle Scholar
  19. McGrath JR, Beck M, Hill ME (2017) Replicating red: analysis of ceramic slip color with CIELAB color data. J Archaeol Sci Rep 14:432–438.  https://doi.org/10.1016/j.jasrep.2017.06.020 Google Scholar
  20. Nayik GA, Nanda V (2016) ‘A chemometric approach to evaluate the phenolic compounds, antioxidant activity and mineral content of different unifloral honey types from Kashmir, India. LWT Food Sci Technol 74:504–513.  https://doi.org/10.1016/j.lwt.2016.08.016 CrossRefGoogle Scholar
  21. Popek S, Halagarda M, Kursa K (2017) A new model to identify botanical origin of Polish honeys based on the physicochemical parameters and chemometric analysis. LWT Food Sci Technol 77:482–487.  https://doi.org/10.1016/j.lwt.2016.12.003 CrossRefGoogle Scholar
  22. Seraglio SKT, Valese AC, Daguer H, Bergamo G, Azevedo MS, Nehring P, Gonzaga LV, Fett R, Costa ACO (2017) Effect of in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds, minerals, and antioxidant capacity of Mimosa scabrella Bentham honeydew honeys. Food Res Int 99:670–678.  https://doi.org/10.1016/j.foodres.2017.06.024 CrossRefGoogle Scholar
  23. Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R (2016) Honey: chemical composition, stability and authenticity. Food Chem 196:309–323.  https://doi.org/10.1016/j.foodchem.2015.09.051 CrossRefGoogle Scholar
  24. Simova S, Atanassov A, Shishiniova M, Bankova V (2012) A rapid differentiation between oak honeydew honey and nectar and other honeydew honeys by NMR spectroscopy. Food Chem 134(3):1706–1710.  https://doi.org/10.1016/j.foodchem.2012.03.071 CrossRefGoogle Scholar
  25. Singh N, Bath PK (1997) Quality evaluation of different types of Indian honey. Food Chem 58(1–2):129–133.  https://doi.org/10.1016/S0308-8146(96)00231-2 CrossRefGoogle Scholar
  26. Singh N, Bath PK (1998) Relationship between heating and hydroxymethylfurfural formation in different honey types. J Food Sci Technol 35(2):154–156Google Scholar
  27. Tuberoso CIG, Jerković I, Sarais G, Congiu F, Marijanović Z, Kuś PM (2014) Color evaluation of seventeen European unifloral honey types by means of spectrophotometrically determined CIE L*C*abh°ab chromaticity coordinates. Food Chem 145:284–291.  https://doi.org/10.1016/j.foodchem.2013.08.032 CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  • Greici Bergamo
    • 1
  • Siluana Katia Tischer Seraglio
    • 1
  • Luciano Valdemiro Gonzaga
    • 1
  • Roseane Fett
    • 1
  • Renata Dias de Mello Castanho Amboni
    • 1
  • Carolinne Odebrecht Dias
    • 1
  • Ana Carolina Oliveira Costa
    • 1
    Email author
  1. 1.Department of Food Science and TechnologyFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations