Effect of various food processing and handling methods on preservation of natural antioxidants in fruits and vegetables

Abstract

Bioactive compounds from plant sources are generally categorized as natural antioxidants with well-known health benefits. The health-promoting characteristics of natural antioxidants include anti-inflammatory, anti-diabetic, and hepatic effects as well as free radical scavenging. Herein, a comprehensive and comparative review are presented about the effects of conventional (thermal and mechanical) and relatively new (non-thermal) processing methods on phytochemicals and discussed the importance of implementing the use of those methods that could be of very helpful retaining the quality of the bioactive compounds in plant-based foods. Plant-based foods rich in phenolics, vitamin C, carotenoids, and other compounds undergo a range of processing operations before they are consumed. Most of these methods involve thermal treatments of fruits, stems, leaves, and roots. These techniques have varying effects on bioactive compounds and their activities, and the magnitude of these effects depends on process parameters such as temperature, time, and the food matrix. Thermal processing can be detrimental to bioactive compounds while nonthermal procedures may not cause significant deterioration of important health-promoting phytochemicals and in some cases can improve their bio-activity and bio-availability. The detrimental effects of conventional processing on the quality of natural antioxidants have been compared to the effects of innovative nonthermal food treatments such as gamma and ultraviolet irradiation, ultraviolet light, pulsed electric fields, and high hydrostatic pressure.

This is a preview of subscription content, log in to check access.

References

  1. Abid M, Jabbar S, Hu B, Hashim MM, Wu T, Wu Z, Khan MA, Zeng X (2014) Synergistic impact of sonication and high hydrostatic pressure on microbial and enzymatic inactivation of apple juice. LWT Food Sci Technol 59:70–76

    Article  CAS  Google Scholar 

  2. Agcam E, Akyildiz A, Evrendilek GA (2014) Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurization. Food Chem 143:354–361

    Article  CAS  PubMed  Google Scholar 

  3. Alothman MR, Bhat KA (2009) Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends Food Sci Technol 20:201–212

    Article  CAS  Google Scholar 

  4. Amin I, Norazaidah Y, Hainida KIE (2006) Antioxidant activity and phenolic content of raw and blanched Amaranthus species. Food Chem 94:47–52

    Article  CAS  Google Scholar 

  5. Arena E, Fallico B, Maccarone E (2001) Evaluation of antioxidant capacity of blood orange juices as influenced by constituents, concentration process and storage. Food Chem 74:423–427

    Article  CAS  Google Scholar 

  6. Artés-Hernández F, Robles AA, Gómez PA, Tomás-Callejas A, Artés F (2010) Low UV-C illumination for keeping overall quality of fresh-cut watermelon. Postharvest Biol Technol 55:114–120

    Article  CAS  Google Scholar 

  7. Barba FJ, Jäger H, Meneses N, Esteve MJ, Frígola A, Knorr D (2012) Evaluation of quality changes of blueberry juice during refrigerated storage after high-pressure and pulsed electric fields processing. Innov Food Sci Emerg Technol 14:18–24

    Article  CAS  Google Scholar 

  8. Bhat R, Sridhar KR, Bhushan B (2007) Free radicals in velvet bean seeds (Mucuna pruriens L. DC.) and their status after gamma-irradiation and conventional processing. LWT Food Sci Technol 40:1570–1577

    Article  CAS  Google Scholar 

  9. Boekel MV, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S, Somoza V, Knorr D, Jasti PR, Eisenbrand G (2010) A review on the beneficial aspects of food processing. Mol Nutr Food Res 54:1215–1247

    Article  CAS  PubMed  Google Scholar 

  10. Candrawinata VI, Blades BL, Golding JB, Stathopoulos CE, Roach PD (2012) Effect of clarification on the polyphenolic compound content and antioxidant activity of commercial apple juices. Int Food Res J 19:1055–1061

    CAS  Google Scholar 

  11. Chandrasekara N, Shahidi F (2011) Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa. J Agric Food Chem 59:5006–5014

    Article  CAS  PubMed  Google Scholar 

  12. Chawla R, Patil GR, Singh AK (2011) High hydrostatic pressure technology in dairy processing: a review. J Food Sci Technol 48(3):260–268

    Article  PubMed  Google Scholar 

  13. Chen BH, Peng HY, Chen HF (1995) Changes of carotenoids colour and vitamin A contents during processing of carrot juice. J Agric Food Chem 43:1912–1918

    Article  CAS  Google Scholar 

  14. Chen J, Shi J, Xue SJ, Ma Y (2009) Comparison of lycopene stability in water and oil-based food model systems under thermal- and light-irradiation treatments. LWT Food Sci Technol 42:740–747

    Article  CAS  Google Scholar 

  15. Chen ML, Yang DJ, Liu SC (2011) Effects of drying temperature on the flavonoid, phenolic acid and antioxidative capacities of the methanol extract of citrus fruit [Citrus sinensis (L.) Osbeck] peels. Int J Food Sci Technol 46:1179–1185

    Article  CAS  Google Scholar 

  16. Chipurura BM, Muchuweti MF (2010) Effects of thermal treatment on the phenolics content and antioxidant activity of some vegetables. Asian J Clin Nutr 2:93–100

    Article  Google Scholar 

  17. Chu Y, Chang C, Hsu H (2000) Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agric 80:561–566

    Article  CAS  Google Scholar 

  18. Darfour B, Agbenyegah S, Ofosu DO, Okyere AA, Asare IK (2014) Gamma irradiation of Tetrapleura tetraptera fruit as a post-harvest technique and its subsequent effect on some phytochemicals, free scavenging activity and physicochemical properties. Radiat Phys Chem 102:153–158

    Article  CAS  Google Scholar 

  19. Elez-Martínez P, Martín-Belloso O (2007) Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, acold vegetable soup. Food Chem 102:201–209

    Article  CAS  Google Scholar 

  20. Ewald C, Fjelkner-Moding S, Johansson K, Sjoholm I, Akesson B (1999) Effect of processing on major flavonoids processed onions, green beans, and peas. Food Chem 64:231–235

    Article  CAS  Google Scholar 

  21. Fanaro GB, Hassimotto NMA, Bastos DHM, Villavicencio ALCH (2014) Effects of γ-radiation on microbial load and antioxidant proprieties in black tea irradiated with different water activities. Radiat Phys Chem 97:217–222

    Article  CAS  Google Scholar 

  22. Feng M, Ghafoor K, Seo B, Yang K, Park J (2013) Effects of ultraviolet-C treatment in Teflon®- oil on microbial populations and physico-chemical characteristics of watermelon juice. Innov Food Sci Emerg Technol 19:133–139

    Article  CAS  Google Scholar 

  23. Fernandez-Garcia A, Butz P, Tauscher B (2000) Does the antioxidant potential of high pressure treated apple juice change during storage? High Press Res 19:543–550

    Article  Google Scholar 

  24. Gallego-Juárez JA (2001) High power ultrasound. Wiley, London

    Google Scholar 

  25. Galoburda R, Kruma Z, Ruse K (2012) Effect of pretreatment method on the content of phenolic compounds, vitamin C and antioxidant activity of dried dill. World Acad Sci Eng Technol 64:1075–1081

    Google Scholar 

  26. Goh SG, Noranizan M, Leong CM, Sew CC, Sobhi B (2012) Effect of thermal and ultraviolet treatments on the stability of antioxidant compounds in single strength pineapple juice throughout refrigerated storage. Int Food Res J 19:1131–1136

    CAS  Google Scholar 

  27. Goula AM, Adamopoulos KG, Chatzitakis PC, Nikas VA (2006) Prediction of lycopene degradation durin a drying process of tomato pulp. J Food Eng 74:37–46

    Article  CAS  Google Scholar 

  28. Horvathova J, Suhaj M, Simko P (2007) Effect of thermal treatment and storage on antioxidant activity of some spicies. J Food Nutr Res 46:20–27

    CAS  Google Scholar 

  29. Huang W, Bi X, Zhang X, Liao X, Hu X, Wu J (2013) Comparative study of enzymes, phenolics, carotenoids and color of apricot nectars treated by high hydrostatic pressure and high temperature short time. Innov Food Sci Emerg Technol 18:74–82

    Article  CAS  Google Scholar 

  30. Hunter KJ, Fletcher JM (2002) The antioxidant activity and composition of fresh, frozen, jarred and canned vegetables. Innov Food Sci Emerg Technol 3: 399–406

    Article  CAS  Google Scholar 

  31. Hussain PR, Chatterjee S, Variyar PS, Sharma A, Dar MA, Wani AM (2013) Bioactive compounds and antioxidant activity of gamma irradiated sun dried apricots (Prunus armeniaca L.). J Food Compos Anal 30:59–66

    Article  CAS  Google Scholar 

  32. Ismail A, Marjan ZM, Foong CW (2004) Total antioxidant activity and phenolic content in selected vegetables. Food Chem 87:581–586

    Article  CAS  Google Scholar 

  33. Keenan DF, Brunton N, Gormley R, Butler F (2011) Effects of thermal and high hydrostatic pressure processing and storage on the content of polyphenols and some quality attributes of fruit smoothies. J Agric Food Chem 59:601–607

    Article  CAS  PubMed  Google Scholar 

  34. Kim D, Han DG (2012) High hydrostatic pressure treatment combined with enzymes increases the extractability and bioactivity of fermented rice bran. Innov Food Sci Emerg Technol 16:191–197

    Article  CAS  Google Scholar 

  35. Kumari N, Kumar P, Mitra D, Prasad B, Tiwary BN, Varshney L (2009) Effects of ionizing radiation on microbial decontamination, phenolic contents, and antioxidant properties of triphala. J Food Sci 74:M109–M113

    Article  CAS  PubMed  Google Scholar 

  36. Liu LH, Zabaras D, Bennett LE, Aguas P, Woonton BW (2009) Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage. Food Chem 115:495–500

    Article  CAS  Google Scholar 

  37. Madrau MA, Piscopo A, Sanguinetti AM, Del Caro A, Poiana M, Romeo FV, Piga A (2009) Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Europ Food Res Technol 228:441–448

    Article  CAS  Google Scholar 

  38. Makris DP, Rossiter JT (2001) Domestic processing of onion bulbs (Allium cepa) and asparagus spears (Asparagus officinalis): effect of flavonol content and antioxidant status. J Agric Food Chem 49:3216–3222

    Article  CAS  PubMed  Google Scholar 

  39. Mali A, Khedkar K, Lele S (2012) Effect of gamma irradiation on total phenolic content and in vitro antioxidant activity of pomegranate (Punica granatum L.) peels. Food Nutr Sci 2:428–433

    Google Scholar 

  40. Manzocco L, Anese M, Nicoli MC (1998) Antioxidant properties of tea extracts as affected by processing. LWT Food Sci Technol 31:694–698

    Article  CAS  Google Scholar 

  41. McDonald H, Arpaia ML, Caporaso F, Obenland D, Were L, Rakovski C, Prakash A (2013) Effect of gamma irradiation treatment at phytosanitary dose levels on the quality of ‘Lane Late’ navel oranges. Postharvest Biol Technol 86:91–99

    Article  CAS  Google Scholar 

  42. McInerney JK, Seccafien CA, Stewrt CM, Bird AR (2007) Effects of high pressure processing on antioxidant activity, and total carotenoid content and availability, in vegetables. Innov Food Sci Emerg Technol 8:543–548

    Article  CAS  Google Scholar 

  43. Morales-Blancas EF, Chandia VE, Cisneros-Zevallos L (2002) Thermal inactivation kinetics of peroxidase and lipoxygenase from broccoli, gren asparagus and carrots. J Food Sci 67:146–154

    Article  CAS  Google Scholar 

  44. Morton LW, Caccetta RA, Puddey IB, Croft KD (2000) Chemistry and biological effects of dietary phenolic compounds: relevance to cardiovascular disease. Clin Exp Pharmacol Physiol 27:152–159

    Article  CAS  PubMed  Google Scholar 

  45. Nicoli MC, Anese M, Parpinel MT, Franceschi S, Lerici CR (1997) Loss and/or formation of antioxidants during food processing and storage. Cancer Lett 114:71–74

    Article  CAS  PubMed  Google Scholar 

  46. Nicoli MC, Anese M, Parpinel M (1999) Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci Technol 10:94–100

    Article  CAS  Google Scholar 

  47. Noranizan M, Benchamaporn P (2007) Potential of nonthermal processing for food preservation in Southeast Asian Countries. ASEAN Food J 14:141–152

    Google Scholar 

  48. Odriozola-Serrano I, Soliva-Fortuny R, Martın-Belloso O (2008) Phenolic acids, flavonoids, vitamin C and antioxidant capacity of strawberry juices processed by high-intensity pulsed electric fields or heat treatments. Europ Food Res Technol 228:239–248

    Article  CAS  Google Scholar 

  49. Oey I, Plancken IV, Loey AV, Hendrickx M (2008) Does high pressure processing influence nutritional aspects of plant based food systems? Trends Food Sci Technol 19:300–308

    Article  CAS  Google Scholar 

  50. Olivera DF, Vina SZ, Marani CM, Ferreyra RM, Mugridge A, Chaves AR, Mascheroni RH (2008) Effect of blanching on the quality of Brussels sprouts (Brassica oleracea L. gemmifera DC) after frozen storage. J Food Eng 84:148–155

    Article  Google Scholar 

  51. Oms-Oliu G, Odriozola-Serrano I, Soliva-Fortuny R, Martin-Belloso O (1993) Effect of high- intensity pulsed electric field processing condition on lycopene, vitamin C and antioxidant capacity of watermelon juice. Food Chem 115:1312–1319

    Article  CAS  Google Scholar 

  52. Oms-Oliu G, Odriozola-Serrano I, Soliva-Fortuny R, Elez-MartInez P, Martin-Belloso O (2012) Stability of health-related compounds in plant foods through the application of non thermal processes. Trends Food Sci Technol 23:111–123

    Article  CAS  Google Scholar 

  53. Pan J, Vicente AR, Martinez GA, Chaves AR, Civello PM (2004) Combined use of UV-C irradiation and heat treatment to improve postharvest life of strawberry fruit. J Sci Food Agric 84:1831–1838

    Article  CAS  Google Scholar 

  54. Parmar N, Singh N, Kaur A, Virdi AS, Thakur S (2016) Effect of canning on color, protein and phenolic profile of grains from kidney bean, field pea and chickpea. Food Res Int 89:526–532

    Article  CAS  PubMed  Google Scholar 

  55. Patras A, Brunton N, Da Pieve S, Butler F, Downey G (2008) Effect of high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purees. Innov Food Sci Emerg Technol 10:16–22

    Article  CAS  Google Scholar 

  56. Polydera AC, Nikolaos GS, Taoukis PS (2004) The effect of storage on the antioxidant activity of reconstituted orange juice which had been pasteurized by high pressure or heat. Int J Food Sci Technol 39:783–791

    Article  CAS  Google Scholar 

  57. Que F, Mao L, Fang X, Wu T (2008) Comparison of hot air drying and freeze-drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch) flours. Int J Food Sci Technol 43:1195–1201

    Article  CAS  Google Scholar 

  58. Ranilla LG, Genovese MI, Lajolo FM (2009) Effect of different cooking conditions on phenolic compounds and antioxidant capacity of some selected Brazilian bean (Pheselous vulgaris L.) cultivars. J Agric Food Chem 57:5734–5742

    Article  CAS  PubMed  Google Scholar 

  59. Rastogi NK, Raghavarao KS, Balasubramaniam VM, Niranjan K, Knorr D (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 47:69–112

    Article  CAS  PubMed  Google Scholar 

  60. Sahlin E, Savage GP, Lister CE (2004) Investigation of the antioxidant properties of tomatoes after processing. J Food Compos Anal 17:635–647

    Article  CAS  Google Scholar 

  61. Salem IB, Fekih F, Sghaier H, Bousselmi M, Saidi M, Landoulsi A, Fattouch S (2013) Effect of ionising radiation on polyphenolic content and antioxidant potential of parathion-treated sage (Salvia officinalis) leaves. Food Chem 141:1398–1405

    Article  CAS  PubMed  Google Scholar 

  62. Santhirasegaram V, Razali Z, George DS, Somasundram C (2015) Effects of thermal and non- thermal processing on phenolic compounds, antioxidant activity and sensory attributes of chokanan mango (Mangifera indica L.) juice. Food Bioprocess Technol 8:2256–2267

    Article  CAS  Google Scholar 

  63. Scattino C, Castagna A, Neugart S, Chan HM, Schreiner M, Crisosto CH, Tonutti T, Ranieri A (2014) Post-harvest UV-B irradiation induces changes of phenol contents and corresponding biosynthetic gene expression in peaches and nectarines. Food Chem 163:51–60

    Article  CAS  PubMed  Google Scholar 

  64. Shahidi F, Ho C (2005) Phenolics in food and natural health products: an overview. ACS Symp Ser 909:1–8

    Article  CAS  Google Scholar 

  65. Sharma P, Gujral HS (2011) Effect of sand roasting and microwave cooking on antioxidant activity of barley. Food Res Int 44:235–240

    Article  CAS  Google Scholar 

  66. Song HP, Kim DH, Jo C, Lee CH, Kim KS, Byun MW (2006) Effects of gamma irradiation on the microbiological quality and antioxidant activity of fresh vegetable juice. Food Microbiol 23:372–378

    Article  CAS  PubMed  Google Scholar 

  67. Turk MF, Vorobiev E, Baron A (2012) Improving apple juice expression and quality by pulsed electric fieldon an industrial scale. LWT Food Sci Technol 49:245–250

    Article  CAS  Google Scholar 

  68. Valverdú-Queralt A, Medina-Remón A, Andres-Lacueva C, Lamuela-Raventos RM (2011) Changes in phenolic profile and antioxidant activity during production of diced tomatoes. Food Chem 126:1700–1707

    Article  CAS  Google Scholar 

  69. Variyer P, Bandyopadhyay C, Thomas P (1998) Effect of gamma irradiation on the phenolic acids of some Indian spices. Int J Food Sci Technol 33:533–537

    Article  Google Scholar 

  70. Vega-Gálvez A, López J, Torres-Ossandón MJ, Galotto MJ, Puente-Díaz L, Quispe-Fuentes I, Scala KD (2014) High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). LWT Food Sci Technol 58:519–526

    Article  CAS  Google Scholar 

  71. Wanyo P, Meeso N, Siriamornpun S (2014) Effects of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chem 157:457–463

    Article  CAS  PubMed  Google Scholar 

  72. Williamson G, Day AJ, Plumb GW, Couteau D (2000) Human metabolic pathways of dietary flavonoids and cinnamates. Biochem Soc Trans 28:16–22

    Article  CAS  PubMed  Google Scholar 

  73. Zhang D, Hamauzu Y (2004) Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem 88:503–509

    Article  CAS  Google Scholar 

  74. Zhang M, Hettiarachchy NS, Horax R, Chen P, Over KF (2009) Effect of maturity stages and drying methods onthe retention of selected nutrients and phytochemicals in bittermelon (Momordica charantia) leaf. J Food Sci 74(6):C441–C446

    Article  CAS  PubMed  Google Scholar 

  75. Zhang M, Chen H, Li J, Pei Y, Liang Y (2010) Antioxidant properties of tartary buckwheat extracts as affected by different thermal processing methods. LWT Food Sci Technol 43:181–185

    Article  CAS  Google Scholar 

  76. Zheng H, Lee H (2011) Effect of microwave pretreatment on the kinetics of ascorbic acid degradation and peroxidase inactivation in different parts of green asparagus (Asparagus officinalis L.) during water blanching. Food Chem 128:1087–1093

    Article  CAS  Google Scholar 

  77. Zielinski H, Mishalska A, Amigo-Benavent M, Del Castillo MD, Piskula MK (2009) Changes in protein quality and antioxidant properties of buckwheat seeds and groats induced by roasting. J Agric Food Chem 57:4771–4777

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kashif Ghafoor or I. S. M. Zaidul.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-juhaimi, F., Ghafoor, K., Özcan, M.M. et al. Effect of various food processing and handling methods on preservation of natural antioxidants in fruits and vegetables. J Food Sci Technol 55, 3872–3880 (2018). https://doi.org/10.1007/s13197-018-3370-0

Download citation

Keywords

  • Natural antioxidants
  • Conventional processing
  • Thermal processing
  • Nonthermal methods
  • Fruit and vegetable handling