Skip to main content
Log in

Honey moisture reduction and its quality

  • Review Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Beekeeping has been widely promoted in many countries as a major contributor to rural development. Honey is a sweet and viscous liquid which has sweetness due to the presence of monosaccharides. The major constituents of honey are sugars, water, proteins, enzymes, acids and minerals, while the major causes of quality deterioration include heating at high temperatures, high moisture content, adulteration, poor packaging and poor storage conditions. Heating not only eases the processing of bottling by reducing the viscosity of honey, but also reduces the water content in honey to prevent fermentation and delays the granulation by destroying large sugar nuclei. The paper discusses about the different honey moisture reduction systems designed by research workers as well as beekeepers at farm level and the different quality parameters affected by thermal treatment of honey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abu-Jdayil B, Al-Majeed GA, Al-Malah KIM, Zaitoun S (2002) Heat effect on rheology of light and dark-colored honey. J Food Eng 51(1):33–38

    Article  Google Scholar 

  • Ahmed J, Prabhu ST, Ragvahan GSV, Ngadi M (2007) Physico-chemical, rheological, calorimetric and dielectric behavior of selected Indian honey. J Food Eng 79:1207–1213

    Article  CAS  Google Scholar 

  • Aljadi AM, Kamaruddin MY (2004) Evaluation of the phenolic content and antioxidant capacities of two Malaysian floral honeys. Food Chem 85:513–518

    Article  CAS  Google Scholar 

  • Anklam E (1998) A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem 63:549–562

    Article  CAS  Google Scholar 

  • Bartakova K, Drackova M, Borkovc IO, Lenka V (2011) Impact of microwave heating on hydroxymethylfurfural content in Czech honeys. Czech J Food Sci 29(4):328–336

    Article  CAS  Google Scholar 

  • Bath PK, Singh N (1999) A comparison between Helianthus annuus and Eucalyptus lanceolatus honey. Food Chem 67:389–397

    Article  CAS  Google Scholar 

  • Bath PK, Singh N (2001) Effect of microwave heating on hydroxymethylfurfural formation and browning in Helianthus annuus and Eucalyptus lanceolatus honey. J Food Sci Technol 38(4):366–368

    CAS  Google Scholar 

  • Bhandari B, D‘Aray B, Chow S (1999) A research note: rheology of selected Australian honeys. J Food Eng 41:65–68

    Article  Google Scholar 

  • Bogdanov S (1999) Honey quality and international regulatory standards: review by the International Honey Commission. Bee World 90:61–69

    Article  Google Scholar 

  • Bogdanov S, Martin P (2002) Honey authenticity: a review. Mitt Lebensm Hyg 93:232–254

    CAS  Google Scholar 

  • Bulut L, Kilic M (2009) Kinetics of hydroxymethylfurfural accumulation and color change in honey during storage in relation to moisture content. J Food Process Preserv 33:22–32

    Article  CAS  Google Scholar 

  • Chaikham P, Prangthip P (2015) Alteration of antioxidative properties of longan flower honey after high pressure, ultrasonic and thermal processing. Food Biosci 10:1–7

    Article  CAS  Google Scholar 

  • Chakraborti T, Bhattacharya K (2014) Quality assessment of some Indian honeys in storage through HMF content and invertase activity. Int J Pharm Pharm Sci 6(2):827–830

    CAS  Google Scholar 

  • Chua LS, Adnan NA, Abdul-Rahaman NL, Sarmidi MR (2014) Effect of thermal treatment on the biochemical composition of tropical honey samples. Int Food Res J 21(2):773–778

    CAS  Google Scholar 

  • Codex Alimentarius Commission (2001) Adopting the draft revised standard for honey. Alinorm 1(25):22–24

    Google Scholar 

  • Cozmuta AM, Cozmuta LM, Varga C, Marian M, Peter A (2011) Effect of thermal processing on quality of polyfloral honey. Romanian J Food Sci 1(1):45–52

    Google Scholar 

  • Crane E (1990) Bees and beekeeping: science, practice and world resources. Heinemann Newness, London, UK, pp 388–451

    Google Scholar 

  • Cui ZW, Sun LJ, Chen W, Sun DW (2008) Preparation of dry honey by microwave-vacuum drying. J Food Eng 84:582–590

    Article  Google Scholar 

  • Diab DA, Jarkas B (2015) Effect of storage and thermal treatment on the quality of some local brands of honey from Latakia markets. J Entomol Zool Stud 3(3):328–334

    Google Scholar 

  • Doner LW (1977) The sugars of honey: a review. J Sci Food Agric 28:443–456

    Article  CAS  PubMed  Google Scholar 

  • Dyce EJ (1979) Producing finely granulated or creamed honey. In: Crane E (ed) Honey—a comprehensive survey. Heinemann, London, pp 293–306

    Google Scholar 

  • Ellis M (1987) Lowering the moisture content of small lots of extracted honey. Am Bee J 127:182–183

    Google Scholar 

  • Escobedo RM, Ordonez YM, Flores MEJ, Lopez GFG (2006) The composition, rheological and thermal properties of Tajonal (Viguiera Dentata) Mexican honey. Int J Food Prop 9:299–316

    Article  CAS  Google Scholar 

  • Escriche I, Visquert M, Juan-Borras M, Fito P (2009) Influence of simulated industrial thermal treatments on the volatile fractions of different varieties of honey. Food Chem 112(2):329–338

    Article  CAS  Google Scholar 

  • Fallico B, Zappala M, Arena E, Verzera A (2004) Effects of conditioning on HMF content in unifloral honeys. Food Chem 85:305–313

    Article  CAS  Google Scholar 

  • Ghazali HM, Ming TC, Hashim DM (1994) Effect of microwave heating on the storage and properties of starfruit honey. ASEAN Food J 9:30–35

    CAS  Google Scholar 

  • Gill RS, Hans VS, Singh S, Pal Singh P, Dhaliwal SS (2015) A small scale honey dehydrator. J Food Sci Technol 52(10):6695–6702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Liu Y, Zhu X, Wang S (2011) Temperature dependent dielectric properties of honey associated with dielectric heating. J Food Eng 102:209–216

    Article  Google Scholar 

  • Hasan SH (2013) Effect of storage and processing temperatures on honey quality. J Babylon Univ/Pure Appl Sci 21(6):2244–2253

    Google Scholar 

  • Hase S, Suzuki O, Odate M, Suzuki S (1973) Changes in quality of honey on heating and storage-I. Changes in hydroxymethylfurfural (HMF) content of honey. J Food Sci Technol 20:248–256

    Article  CAS  Google Scholar 

  • Hebbar HU, Nandini KE, Lakshmi MC, Subramanian R (2003) Microwave and infrared heat processing of honey and its quality. Food Sci Technol Res 9(1):49–53

    Article  Google Scholar 

  • Hernandez C, Correa A, Quicazan M (2015) Effect of the tyndallization on the quality of Colombian honeys. Chem Eng Trans 43:19–24

    Google Scholar 

  • Hooper T (1983) Guide to bees and honey, 2nd edn. Sterling Pub Co Inc., New York

    Google Scholar 

  • Huidobro JF, Santana FJ, Sanchez MP, Sancho MT, Muniategui S, Simal-Lozano J (1995) Diastase, invertase and ß-glucosidase activities in fresh honey from north-west Spain. J Apic Res 34(1):39–44

    Article  CAS  Google Scholar 

  • Juszczak L, Fortuna T (2006) Rheology of selected Polish honeys. J Food Eng 75:43–49

    Article  Google Scholar 

  • Khan ZS, Nanda V, Bhat MS, Khan A (2015a) Kinetic studies of HMF formation and diastase activity in two different honeys of Kashmir. Int J Curr Microbiol App Sci 4(4):97–107

    CAS  Google Scholar 

  • Khan ZS, Khan IA, Naik HR, Bhat MS (2015b) Kinetic studies on anti-oxidant activity vis-à-vis colour in two Kashmir honeys. Appl Biol Res 17(1):15–23

    Article  Google Scholar 

  • Kowalski S (2013) Changes of antioxidant activity and formation of 5-hydroxymethylfurfural in honey during thermal and microwave processing. Food Chem 141:1378–1382

    Article  CAS  PubMed  Google Scholar 

  • Kowalski S, Lukasiewicz M, Bednarz S, Panus M (2012) Diastase number changes during thermal and microwave processing of honey. Czech J Food Sci 30:21–26

    Article  CAS  Google Scholar 

  • Krell R (1996) Value added products from bee keeping. In: FAO agricultural services bulletin, vol 124. Food and Agricultural Organisation, Rome, p 371

    Google Scholar 

  • Kuehl LJ (1988) Apparatus for removing moisture from honey. US Patent No. 4763572

  • Kugonza DR, Nabakabya D (2008) Honey quality as affected by handling, processing and marketing channels in Uganda. Tropicultura 26(2):113–118

    Google Scholar 

  • LaGrange V, Sanders SW (1988) Honey in cereal-based new food products. Cereal Foods World 33:833–838

    Google Scholar 

  • Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR (2001) Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci Technol 11:340–346

    Article  Google Scholar 

  • Maxwell H (1987) A small-scale honey drying system. Am Bee J 127:284–286

    Google Scholar 

  • Minhas S (2010) Nutritional, storage and value addition studies on raw and heat processed honey. Ph.D. thesis, CSKHPKV, Palampur

  • Murrell D, Henley B (1988) Drying honey in a hot room. Am Bee J 128:347–351

    Google Scholar 

  • Paysen J (1987) A method for drying honey on a commercial scale. Am Bee J 127:273–282

    Google Scholar 

  • Pereyra GA, Burin L, Pilar BM (1999) Color changes during storage of honeys in relation to their composition and initial colour. Food Res Int 32:185–191

    Article  Google Scholar 

  • Platt JL Jr., Ellis JRB (1984) Removing water from honey at ambient pressure. US Patent No. 4472450

  • Ribeiro ROR, Carneiro CS, Mársico ET, Cunha FL, Junior CAC, Mano SB (2012) Influence of the time/temperature binomial on the Hydroxymethylfurfural content of floral honeys subjected to heat treatment. Ciênc Agrotecnol 36(2):204–209

    Article  CAS  Google Scholar 

  • Sahinler N, Gul A (2005) Effect of heating and storage on honey hydroxymethylfurfural and diastase activity. J Food Technol 3(2):152–157

    Google Scholar 

  • Samira N (2016) The effect of heat treatment on the quality of Algerian honey. Researcher 8(9):1–6

    Google Scholar 

  • Semkiw P, Skowronek W, Skubida P (2008) Changes in water content of honey during ripening under controlled condition. J Apic Sci 52(1):57–63

    Google Scholar 

  • Singh N, Bath PK (1997) Quality evaluation of different types of Indian honey. Food Chem 58(1–2):129–133

    Article  CAS  Google Scholar 

  • Singh N, Bath PK (1998) Relationship between heating and hydroxymethylfurfural formation in different honey types. J Food Sci Technol 35(2):154–156

    CAS  Google Scholar 

  • Singh S, Gill RS, Singh PP (2011) Desiccant honey dehydrator. Int J Ambient Energy 32(2):62–69

    Article  CAS  Google Scholar 

  • Sopade PA, Halley P, Bhandari B, D’Arcy B, Doebler C, Caffin N (2002) Application of the Williams Landel Ferry model to the viscosity–temperature relationship of Australian honeys. J Food Eng 56:67–75

    Article  Google Scholar 

  • Subramanian R, Hebbar HU, Rastogi NK (2007) Processing of honey: a review. Int J Food Prop 10(1):127–143

    Article  Google Scholar 

  • Tosi E, Re E, Lucero H, Bulacio L (2004) Effect of honey high-temperature short-time heating on parameters related to quality, crystallisation phenomena and fungal inhibition. Lebensm Wiss Technol 37:669–678

    Article  CAS  Google Scholar 

  • Tosi E, Martinet R, Ortega N, Lucero H, Re E (2008) Honey diastase activity modified by heating. Food Chem 106:883–887

    Article  CAS  Google Scholar 

  • Tulasidas TN, Raghavan GSV, Van de Voort F, Girard R (1995) Dielectric properties of grapes and sugar solutions at 2.45 GHz. J Microw Power Electromagn Energy 30:117–123

    Article  CAS  PubMed  Google Scholar 

  • Turhan I, Tetik N, Karhan M, Gurel F, Tavukcuoglu RH (2008) Quality of honeys influenced by thermal treatment. LWT Food Sci Technol 41:1396–1399

    Article  CAS  Google Scholar 

  • Turkmen N, Sari F, Poyrazoglu ES, Velioglu YS (2006) Effects of prolonged heating on antioxidant activity and colour of honey. Food Chem 95(4):653–657

    Article  CAS  Google Scholar 

  • Wakhle DM, Nair SK, Phadke RP (1988) Reduction of excess moisture in honey-I, a small scale unit. Indian Bee J 50:98–100

    Google Scholar 

  • Wakhle DM, Phadke RP, Pais DVE, Nair SK (1996) Design for honey processing unit—part II. Indian Bee J 58:5–9

    Google Scholar 

  • White JW (1979) Composition of honey. In: Crane E (ed) Honey—a comprehensive survey. Heinemann, London, pp 157–158

    Google Scholar 

  • Yanniotis S, Skaltsi S, Karaburnioti S (2006) Effect of moisture content on the viscosity of honey at different temperatures. J Food Eng 72:372–377

    Article  Google Scholar 

  • Yener E, Ungan S, Ozilgen M (1987) Drying behavior of honey–starch mixtures. J Food Sci 52:1054–1058

    Article  Google Scholar 

  • Yoo B (2004) Effect of temperature on dynamic rheology of Korean honeys. J Food Eng 65(3):459–463

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqbal Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, I., Singh, S. Honey moisture reduction and its quality. J Food Sci Technol 55, 3861–3871 (2018). https://doi.org/10.1007/s13197-018-3341-5

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-018-3341-5

Keywords

Navigation