Nanomaterials in food packaging: state of the art and analysis

Abstract

It is less than 20 years since nanotechnology found applications in food packaging. The new packaging materials have featured various improved characteristics such as antimicrobial activity and active packaging. However, there is a great controversy about the production cost, safety and suitability of nanocomposite materials to come in contact with foodstuffs. To this end, we critically summarize the literature in order to provide the overview of the current status in the field. A scientometric evaluation is presented for the first time in order to illustrate the state of the art. The USA and the Asian countries are the leaders, while the EU countries follow. Additionally, as the analysis of nanomaterials in food matrices is still in early stage, there is an emerging demand to review the analytical techniques which are capable for the monitoring of nanomaterials. Microscopy, spectroscopy, separation and mass spectrometry techniques show advantages and drawbacks which are discussed. FFF-ICP-MS and sp-ICP-MS have the greatest potential for the detection of inorganic nanoparticles in food. In conclusion, the difficulty of analyzing nanoparticles is increased by the lack of standard solutions, reference materials, standard methods and the limited number of available inter-laboratory proficiency tests.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adepu S, Khandelwal M (2018) Broad-spectrum antimicrobial activity of bacterial cellulose silver nanocomposites with sustained release. J Mater Sci 53:1596–1609

    Article  CAS  Google Scholar 

  2. Andrievsky G, Klochkov V, Bordyuh A, Dovbeshko G (2002) Comparative analysis of two aqueous-colloidal solutions of C 60 fullerene with help of FTIR reflectance and UV–Vis spectroscopy. Chem Phys Lett 364:8–17

    Article  CAS  Google Scholar 

  3. Blasco C, Picó Y (2011) Determining nanomaterials in food. TrAC Trends Anal Chem 30:84–99

    Article  CAS  Google Scholar 

  4. Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22:604–610

    Article  CAS  Google Scholar 

  5. Bumbudsanpharoke N, Ko S (2015) Nano-food packaging: an overview of market, migration research, and safety regulations. J Food Sci 80:910–923

    Article  CAS  Google Scholar 

  6. Bumbudsanpharoke N, Choi J, Ko S (2015) Applications of nanomaterials in food packaging. J Nanosci Nanotechnol 15:6357–6372

    Article  CAS  PubMed  Google Scholar 

  7. Carneado S, Hernández-Nataren E, López-Sánchez JF, Sahuquillo A (2015) Migration of antimony from polyethylene terephthalate used in mineral water bottles. Food Chem 166:544–550

    Article  CAS  PubMed  Google Scholar 

  8. Castro-Mayorga JL, Freitas F, Reis MAM, Prieto MA, Lagaron JM (2018) Biosynthesis of silver nanoparticles and polyhydroxybutyrate nanocomposites of interest in antimicrobial applications. Int J Biol Macromol 108:426–435

    Article  CAS  PubMed  Google Scholar 

  9. Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280

    Article  CAS  Google Scholar 

  10. Chaudhry Q et al (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A 25:241–258

    Article  CAS  Google Scholar 

  11. Childs NM (2003) Nutraceuticals and development systems: process and content. J Diet Suppl 4:1–2

    Google Scholar 

  12. Chorianopoulos N, Tsoukleris D, Panagou E, Falaras P, Nychas G-J (2011) Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiol 28:164–170

    Article  CAS  PubMed  Google Scholar 

  13. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  CAS  PubMed  Google Scholar 

  14. Dey N, Bhagat D, Cherukaraveedu D, Bhattacharya S (2017) Utilization of red-light-emitting CdTe nanoparticles for the trace-level detection of harmful herbicides in adulterated food and agricultural crops. Chem Asian J 12:76–85

    Article  CAS  PubMed  Google Scholar 

  15. Downing-Perrault A (2005) Polymer nanocomposites are the future. University of Wisconsin-Stout, Menomonie

    Google Scholar 

  16. Espitia PJP, Otoni CG, Soares NFF (2016) Zinc Oxide nanoparticles for food packaging applications. In: Barros-Velazquez J (ed) Antimicrobial food packaging, 1st edn. Elsevier, London, pp 425–431

    Google Scholar 

  17. Fantini C et al (2004) One-dimensional character of combination modes in the resonance Raman scattering of carbon nanotubes. Phys Rev Lett 93:087401

    Article  CAS  PubMed  Google Scholar 

  18. Farré M, Barceló D (2012) Introduction to the analysis and risk of nanomaterials in environmental and food samples. In: Barcelo D, Farré M (eds) Comprehensive analytical chemistry, 1st edn. Elsevier, Oxford, pp 1–32

    Google Scholar 

  19. Farré M, Pérez S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda A, Barceló D (2010) First determination of C 60 and C 70 fullerenes and N-methylfulleropyrrolidine C 60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J Hydrol 383:44–51

    Article  CAS  Google Scholar 

  20. Gallocchio F et al (2016) Testing nano-silver food packaging to evaluate silver migration and food spoilage bacteria on chicken meat. Food Addit Contam Part A 33:1063–1071

    Article  CAS  Google Scholar 

  21. Georgiou CA, Danezis GP (2015) Elemental and isotopic mass spectrometry. In: Pico Y (ed) Advanced mass spectrometry for food safety and quality, comprehensive analytical chemistry. Elsevier, Amsterdam, pp 131–243

    Google Scholar 

  22. Gimbert LJ, Hamon RE, Casey PS, Worsfold PJ (2007) Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation. Environ Chem 4:8–10

    Article  CAS  Google Scholar 

  23. Gismondi A, Nanni V, Reina G, Orlanducci S, Terranova ML, Canini A (2016) Nanodiamonds coupled with 5, 7-dimethoxycoumarin, a plant bioactive metabolite, interfere with the mitotic process in B16F10 cells altering the actin organization. Int J Nanomed 11:557

    Article  CAS  Google Scholar 

  24. Grattan DW, Gilberg M (1994) Ageless oxygen absorber: chemical and physical properties. Stud Conserv 39:210–214

    CAS  Google Scholar 

  25. Grieger KD, Harrington J, Mortensen N (2016) Prioritizing research needs for analytical techniques suited for engineered nanomaterials in food. Trends Food Sci Technol 50:219–229

    Article  CAS  Google Scholar 

  26. Guan B, Lu W, Fang J, Cole RB (2007) Characterization of synthesized titanium oxide nanoclusters by MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 18:517–524

    Article  CAS  PubMed  Google Scholar 

  27. Haase A et al (2011) Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses. J Phys Conf Ser 304:012030

    Article  CAS  Google Scholar 

  28. Hannon JC, Kerry JP, Cruz-Romero M, Azlin-Hasim S, Morris M, Cummins E (2017) Kinetic desorption models for the release of nanosilver from an experimental nanosilver coating on polystyrene food packaging. Innov Food Sci Emerg Technol 44:149–158

    Article  CAS  Google Scholar 

  29. Huang JY, Li X, Zhou W (2015) Safety assessment of nanocomposite for food packaging application. Trends Food Sci Technol 45:187–199

    Article  CAS  Google Scholar 

  30. Isaacson CW, Usenko CY, Tanguay RL, Field JA (2007) Quantification of fullerenes by LC/ESI-MS and its application to in vivo toxicity assays. Anal Chem 79:9091–9097

    Article  CAS  PubMed  Google Scholar 

  31. Jang SH, Jang SR, Lee GM, Ryu JH, Park SI, Park NH (2017) Halloysite nanocapsules containing thyme essential oil: preparation, characterization, and application in packaging materials. J Food Sci 82:2113–2120

    Article  CAS  PubMed  Google Scholar 

  32. Khan A, Wen Y, Huq T, Ni Y (2018) Cellulosic nanomaterials in food and nutraceutical applications: a review. J Agric Food Chem 66:8–19

    Article  CAS  PubMed  Google Scholar 

  33. Lee S, Bi X, Reed RB, Ranville JF, Herckes P, Westerhoff P (2014) Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ Sci Technol 48:10291–10300

    Article  CAS  PubMed  Google Scholar 

  34. Lei S, Hoa SV, Ton-That M-T (2006) Effect of clay types on the processing and properties of polypropylene nanocomposites. Compos Sci Technol 66:1274–1279

    Article  CAS  Google Scholar 

  35. Li XH, Li WL, Xing YG, Jiang YH, Ding YL, Zhang PP (2011) Effects of nano-ZnO power-coated PVC film on the physiological properties and microbiological changes of fresh-cut “Fuji” apple. Adv Mat Res Trans Tech Publ 152–153:450–453

    Google Scholar 

  36. Lin K-H, Chu T-C, Liu F-K (2007) On-line enhancement and separation of nanoparticles using capillary electrophoresis. J Chromatogr A 1161:314–321

    Article  CAS  PubMed  Google Scholar 

  37. Luykx DM, Peters RJ, van Ruth SM, Bouwmeester H (2008) A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agric Food Chem 56:8231–8247

    Article  CAS  PubMed  Google Scholar 

  38. Mavrocordatos D, Pronk W, Boller M (2004) Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy. Water Sci Technol 50(12):9–18

    Article  CAS  PubMed  Google Scholar 

  39. McClements DJ, Xiao H (2017) Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. Sci Food 1:6. https://doi.org/10.1038/s41538-017-0005-1

    Article  Google Scholar 

  40. Memiş S, Tornuk F, Bozkurt F, Durak MZ (2017) Production and characterization of a new biodegradable fenugreek seed gum based active nanocomposite film reinforced with nanoclays. Int J Biol Macromol 103:669–675

    Article  CAS  PubMed  Google Scholar 

  41. Mlalila N, Kadam DM, Swai H, Hilonga A (2016) Transformation of food packaging from passive to innovative via nanotechnology: concepts and critiques. J Food Sci Technol 53:3395–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mlalila NG, Swai HS, Hilonga A, Kadam DM (2017) Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli. Nanotechnol Sci Appl 10:1–9. https://doi.org/10.2147/NSA.S123681

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen TH, Lin M, Mustapha A (2015) Toxicity of graphene oxide on intestinal bacteria and Caco-2 cells. J Food Prot 78:996–1002

    Article  CAS  PubMed  Google Scholar 

  44. Nurmi JT et al (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230

    Article  CAS  PubMed  Google Scholar 

  45. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Picó Y (2016) Challenges in the determination of engineered nanomaterials in foods. TrAC Trends Anal Chem 84:149–159

    Article  CAS  Google Scholar 

  47. Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1956

    Article  CAS  Google Scholar 

  48. Raj B, Matche RS (2012) Safety and regulatory aspects of plastics as food packaging materials. In: Yam KL, Lee DS (eds) Emerging food packaging technologies: principles and practice, 1st edn. Elsevier, Cambridge, pp 335–357

    Google Scholar 

  49. Reig CS, Lopez AD, Ramos MH, Cloquell Ballester VA (2014) Nanomaterials: a map for their selection in food packaging applications. Packag Technol Sci 27:839–866

    Article  CAS  Google Scholar 

  50. Scarfato P, Di Maio L, Milana MR, Giamberardini S, Denaro M, Incarnato L (2017) Performance properties, lactic acid specific migration and swelling by simulant of biodegradable poly (lactic acid)/nanoclay multilayer films for food packaging. Food Addit Contam Part A 34:1730–1742

    Article  CAS  Google Scholar 

  51. Scrinis G, Lyons K (2010) Nanotechnology and the techno-corporate agri-food paradigm food security, nutrition and sustainability. In: Lawrence G, Lyons K, Wallington T (eds) Food security, nutrition and sustainability, 1st edn. Earthscan, London, pp 252–270

    Google Scholar 

  52. Segal E (2017) NanoPack: state-of-the-art packaging to improve food safety and reduce food waste. Agro Food Ind Hi Tech 28:60–63

    Google Scholar 

  53. ShengdaTech (2008) ShengdaTech develops nano-precipitated calcium carbonate for polyethylene. Addit Polym 2008(4):2–3

    Google Scholar 

  54. Šimon P, Chaudhry Q, Bakoš D (2008) Migration of engineered nanoparticles from polymer packaging to food—a physicochemical view. J Food Nutr Res 47:105–113

    Google Scholar 

  55. Smolander M, Chaudhry Q (2010) Nanotechnologies in food packaging. In: Chaudhry Q, Castle L, Watkins R (eds) Nanotechnologies in food, 1st edn. RSC, Cambridge, pp 86–101

    Google Scholar 

  56. Staroszczyk H, Malinowska-Pańczyk E, Gottfried K, Kołodziejska I (2017) Fish gelatin-nanoclay films. part I: effect of a kind of nanoclays and glycerol concentration on mechanical and water barrier properties of nanocomposites. J Food Process Preserv 41(5):e13211

    Article  CAS  Google Scholar 

  57. Störmer A, Bott J, Kemmer D, Franz R (2017) Critical review of the migration potential of nanoparticles in food contact plastics. Trends Food Sci Technol 63:39–50. https://doi.org/10.1016/j.tifs.2017.01.011

    Article  CAS  Google Scholar 

  58. Taylor MR (2008) Assuring the safety of nanomaterials in food packaging: the regulatory process and key issues, technical report. Woodrow Wilson International Center for Scholars, Washington

    Google Scholar 

  59. Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellöv M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A 25:795–821

    Article  CAS  Google Scholar 

  60. Von der Kammer F, Legros S, Hofmann T, Larsen EH, Loeschner K (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TrAC Trends Anal Chem 30:425–436

    Article  CAS  Google Scholar 

  61. Wang Y, Wu S, Zhao X, Su Z, Du L, Sui A (2014) In vitro toxicity evaluation of graphene oxide on human RPMI 8226 cells. Biomed Mater Eng 24:2007–2013

    CAS  PubMed  Google Scholar 

  62. Wu X, Song Y, Yan X, Zhu C, Ma Y, Du D, Lin Y (2017) Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens Bioelectron 94:292–297

    Article  CAS  PubMed  Google Scholar 

  63. Yang T, Huang H, Zhu F, Lin Q, Zhang L, Liu J (2016) Recent progresses in nanobiosensing for food safety analysis. Sensors 16(7):1118

    Article  CAS  Google Scholar 

  64. Yang Y, Fang G, Wang X, Zhang F, Liu J, Zheng W, Wang S (2017) Electrochemiluminescent graphene quantum dots enhanced by MoS2 as sensing platform: a novel molecularly imprinted electrochemiluminescence sensor for 2-methyl-4-chlorophenoxyacetic acid assay. Electrochim Acta 228:107–113

    Article  CAS  Google Scholar 

  65. Ziegler KJ, Schmidt DJ, Rauwald U, Shah KN, Flor EL, Hauge RH, Smalley RE (2005) Length-dependent extraction of single-walled carbon nanotubes. Nano Lett 5:2355–2359

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Aristeidis S. Tsagkaris or Georgios P. Danezis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsagkaris, A.S., Tzegkas, S.G. & Danezis, G.P. Nanomaterials in food packaging: state of the art and analysis. J Food Sci Technol 55, 2862–2870 (2018). https://doi.org/10.1007/s13197-018-3266-z

Download citation

Keywords

  • Nanomaterials
  • Nanoparticles
  • Food packaging
  • Analytical techniques
  • Scientometric evaluation
  • FFF-ICP-MS