The rheology of batch and continuously prepared gluten-free bread dough in oscillatory and capillary shear flow

  • Volker R. G. Lammers
  • Patrick Wolf
  • Erich J. Windhab
Original Article
  • 6 Downloads

Abstract

Reduced elasticity and high stickiness of gluten-free bread doughs are major issues regarding the industrial breadmaking process. In this work, we compared traditional batch mixing with a revised continuous extrusion process and extensively study the rheological properties of both doughs. Shear viscosities were measured offline with a capillary rheometer and inline at the extruder die over a large range of apparent shear rates. Data were corrected for entrance effects, wall slip and non-Newtonian flow behaviour. Good agreement between inline and offline measured viscosities were supplemented by amplitude and frequency sweep tests. The results highlight that this extrusion process fostered the production of gluten-free bread dough. We demonstrated that extrusion processing support the combined mixing, kneading, and moulding of gluten-free dough in one single unit. This fundamental study linked physical dough characterization with applied engineering and yielded the understanding and processing of corresponding products.

Keywords

Capillary rheometry Extrusion Dough rheology Gluten-free Dough processing 

Notes

Acknowledgements

The financial support by Swiss Commission of Technology and Innovation (CTI) under contract number 13615.1 PFFLR-LS is gratefully acknowledged.

Supplementary material

13197_2018_3231_MOESM1_ESM.docx (108 kb)
Supplementary material 1 (DOCX 108 kb)

References

  1. Aichholzer W, Fritz HG (1998) Rheological characterization of thermoplastic starch materials. Starch Stärke 50:77–83CrossRefGoogle Scholar
  2. Arendt EK, Morrissey A, Moore MM, Dal Bello F (2008) Gluten-free breads. In: Arendt EK (ed) Gluten-free cereal products and beverages. Academic Press, USA, pp 110–119Google Scholar
  3. Bagley EB (1957) End corrections in the capillary flow of polyethylene. J Appl Phys 28:624–627CrossRefGoogle Scholar
  4. Bagley EB, Dintzis FR, Chakrabarti S (1998) Experimental and conceptual problems in the rheological characterization of wheat flour doughs. Rheol Acta 37:556–565CrossRefGoogle Scholar
  5. Bloksma A (1990) Rheology of the breadmaking process. Cereal Foods World 35:228–236Google Scholar
  6. Braun P, Mennig G (1996) In-line-Rheometrie durch direkte Wandschubspannungsermittlung. Die Angew Makromol Chem 238:73–86CrossRefGoogle Scholar
  7. Breuillet C, Yildiz E, Cuq B, Kokini JL (2002) Study of the anomalous capillary Bagley factor behavior of three types of wheat flour doughs at two moisture contents. J Texture Stud 33:315–340CrossRefGoogle Scholar
  8. Cauvain SP (2015) Breadmaking Processes. In: Cauvian SP, Young LS (eds) Technology of Breadmaking. Springer, Berlin, pp 23–55Google Scholar
  9. Corfield G, Adams M, Briscoe B, Fryer P, Lawrence C (1999) A critical examination of capillary rheometry for foods (exhibiting wall slip). Food Bioprod Process 77:3–10CrossRefGoogle Scholar
  10. Cuq B, Yildiz E, Kokini JL (2002) Influence of mixing conditions and rest time on capillary flow behavior of wheat flour dough. Cereal Chem 79:129–137CrossRefGoogle Scholar
  11. Demirkesen I, Mert B, Sumnu G, Sahin S (2010) Rheological properties of gluten-free bread formulations. J Food Eng 96:295–303CrossRefGoogle Scholar
  12. Dobraszczyk B, Morgenstern M (2003) Rheology and the breadmaking process. J Cereal Sci 38:229–245CrossRefGoogle Scholar
  13. Eisenschitz R, Rabinowitsch B, Weissenberg K (1929) Zur Analyse des Formänderungswiderstandes. Mitteilungen der deutschen Materialprüfungsanstalten. Springer, Berlin, pp 91–94CrossRefGoogle Scholar
  14. Faridi H, Faubion JM (1990) Dough rheology and baked product texture. Van Nostrand Reinhold, New YorkCrossRefGoogle Scholar
  15. Geiger K (1989) Rheological characterization of EPDM rubber compounds with high-pressure capillary rheometer systems. Kautsch Gummi Kunstst 42:273–283Google Scholar
  16. Hesso N, Loisel C, Chevallier S, Marti A, Le-Bail P, Le-Bail A, Seetharaman K (2015) The role of ingredients on thermal and rheological properties of cake batters and the impact on microcake texture. LWT Food Sci Technol 63:1171–1178CrossRefGoogle Scholar
  17. Hicks C, See H (2010) The rheological characterisation of bread dough using capillary rheometry. Rheol Acta 49:719–732CrossRefGoogle Scholar
  18. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753CrossRefGoogle Scholar
  19. Kieffer R, Kim J, Kempf M, Belitz HD, Lehmann J, Sprößler B, Best E (1982) Untersuchung rheologischer Eigenschaften von Teig und Kleber aus Weizenmehl durch Kapillarviscosimetrie. Zeitschrift für Lebensmittel-Untersuchung und Forschung 174:216–221CrossRefGoogle Scholar
  20. Lazaridou A, Duta D, Papageorgiou M, Belc N, Biliaderis C (2007) Effects of hydrocolloids on dough rheology and bread quality parameters in glutenfree formulations. J Food Eng 79:1033–1047CrossRefGoogle Scholar
  21. Luukkonen P, Newton JM, Podczeck F, Yliruusi J (2001) Use of a capillary rheometer to evaluate the rheological properties of microcrystalline cellulose and silicicated microcrystalline cellulose wet masses. Int J Pharm 216:147–157CrossRefGoogle Scholar
  22. Menjivar J (1990) Fundamental aspects of dough rheology. In: Faridi H, Faubion JM (eds) Dough rheology and baked product texture. Van Nostrand Reinhold, New York, pp 1–29Google Scholar
  23. Migliori M, Gabriele D, Baldino N, Lupi FR, De Cindio B (2011) Rheological properties of batter dough: effect of egg level. J Food Process Eng 34:1266–1281CrossRefGoogle Scholar
  24. Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210–222CrossRefGoogle Scholar
  25. Mourniac P, Agassant JF, Vergnes B (1992) Determination of the wall slip velocity in the flow of a SBR compound. Rheol Acta 31:565–574CrossRefGoogle Scholar
  26. Pabedinskas A, Cluett WR, Balke ST (1991) Development of an in-line rheometer suitable for reactive extrusion processes. Polym Eng Sci 31:365–375CrossRefGoogle Scholar
  27. Phan-Thien N, Safari-Ardi M, Morales-Patiño A (1997) Oscillatory and simple shear flows of a flour-water dough: a constitutive model. Rheol Acta 36:38–48CrossRefGoogle Scholar
  28. Poinot P, Arvisenet G, Grua-Priol J, Colas D, Fillonneau C, Le-Bail A, Prost C (2008) Influence of formulation and process on the aromatic profile and physical characteristics of bread. J Cereal Sci 48:686–697CrossRefGoogle Scholar
  29. Pruska-Kedzior A, Kedzior Z, Goracy M, Pietrowska K, Przybylska A, Spychalska K (2008) Comparison of rheological, fermentative and baking properties of gluten-free dough formulations. Eur Food Res Technol 227:1523–1536CrossRefGoogle Scholar
  30. Sharma N, Hanna M, Chen Y (1993) Flow behavior of wheat flour-water dough using a capillary rheometer. I. effect of capillary geometry. Cereal Chem 70:59–63Google Scholar
  31. Singh N, Smith AC (1999) Rheological behaviour of different cereals using capillary rheometry. J Food Eng 39:203–209CrossRefGoogle Scholar
  32. Sofou S, Muliawan E, Hatzikiriakos S, Mitsoulis E (2008) Rheological characterization and constitutive modeling of bread dough. Rheol Acta 47:369–381CrossRefGoogle Scholar
  33. Uthayakumaran S, Newberry M, Phan-Thien N, Tanner R (2002) Small and large strain rheology of wheat gluten. Rheol Acta 41:162–172CrossRefGoogle Scholar
  34. Yazar G, Duvarci O, Tavman S, Kokini JL (2016) Non-linear rheological properties of soft wheat flour dough at different stages of farinograph mixing. Appl Rheol 26:1–11Google Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2018

Authors and Affiliations

  1. 1.Laboratory of Food Process Engineering, Institute of Food, Nutrition and HealthETH ZurichZurichSwitzerland
  2. 2.Research Platform Process EngineeringGerman Institute of Food Technologies (DIL e.V.)QuakenbrückGermany

Personalised recommendations