Advertisement

Journal of Food Science and Technology

, Volume 55, Issue 5, pp 1859–1869 | Cite as

Oxidative status of a yogurt-like fermented maize product containing phytosterols

  • Adriana María Descalzo
  • Sergio Aníbal Rizzo
  • Adrien Servent
  • Luciana Rossetti
  • Marc Lebrun
  • Carolina Daiana Pérez
  • Renaud Boulanger
  • Christian Mestres
  • Dominique Pallet
  • Claudie Dhuique-Mayer
Original Article

Abstract

This work describes the formulation of a functional yogurt-like product based on fermented maize with added phytosterols and its oxidative stability during cold storage. The technological challenge was to stabilize 3.5% esterified phytosterols (between 2 and 3 g of free sterols) in a low-fat emulsion and to preserve the obtained product throughout processing and storage. The natural bioactive compounds: lutein, zeaxanthin, β-cryptoxanthin, β-carotene and γ-tocopherol were detected in the yogurt, and remained stable during 12 days of refrigeration. Higher content of C18:1 n-9 and C18:3 n-3 (six and ninefold, respectively) were obtained in samples with phytosterols. This was desirable from a nutritional point of view, but at the same time it induced lipid oxidation that was 1.4-fold higher in the product with phytosterols than in the controls. The use of a multivariate approach served to find descriptors which were related to treatments, and to explain their behavior over time.

Keywords

Phytosterols Maize-yogurt Antioxidants Volatiles 

Notes

Acknowledgements

We wish to particularly thank Dr. Debora Primrose, a native speaker, for her revision of the English language and Safisis/Lesaffre for providing the Lactobacillus casei (CNCM I-4592).

Supplementary material

13197_2018_3102_MOESM1_ESM.pdf (15 kb)
Supplementary Fig. 1: Phytosterols content in fermented maize yogurt-like product (P samples) during refrigerated storage. Different letters indicate significant differences (p < 0.05) between samples using Tukey’s multiple comparisons test of one-way ANOVA. (PDF 15 kb)
13197_2018_3102_MOESM2_ESM.pdf (27 kb)
Supplementary Fig. 2: Heat map of volatile compounds determined in control (C) and phytosterol added (P) yogurt-like product during storage at 4 °C. Green color indicates high volatile values (> 1 relative units) and red color indicates low volatile values (< -1 relative units). (PDF 27 kb)

References

  1. Akissoé NH, Sacca C, Declemy AL, Bechoff A, Anihouvi VB, Dalodé G, Pallet D, Fliedel G, Mestres C, Hounhouigan JD, Tomlins KI (2014) Cross-cultural acceptance of a traditional yoghurt-like product made from fermented cereal. J Sci Food Agric 95:1876–1884.  https://doi.org/10.1002/jsfa.6892 CrossRefGoogle Scholar
  2. Amiot MJ, Knol D, Cardinault N, Nowicki M, Bott R, Antona C, Borel P, Bernard JP, Duchateau G, Lairon D (2011) Phytosterol ester processing in the small intestine: impact on cholesterol availability for absorption and chylomicron cholesterol incorporation in healthy humans. J Lipid Res 52:1256–1264.  https://doi.org/10.1194/jlr.M013730 CrossRefGoogle Scholar
  3. A.O.A.C. (1980) Official methods of analysis, 15th edn. Association of Official Analitycal Chemists. Kenneth Helrich, Ed., Washington DCGoogle Scholar
  4. Bechoff A, Dhuique-Mayer C (2017) Factors influencing micronutrient bioavailability in biofortified crops. Ann NY Acad Sci 1390:74–87.  https://doi.org/10.1111/nyas.13301 CrossRefGoogle Scholar
  5. Blumenfeld Olivares JA, Martin ISM, Calle ME, Valdes CB, Arruche EP, Delgado EA, Ciudad MJ, Cabria MH, Yurita LC (2015) Low-fat, fermented milk enriched with plant sterols, a strategy to reduce hypertriglyceridema in children, a double-blind, randomized placebo-cotrolled trial. Nutr Hosp 32:1056–1060.  https://doi.org/10.3305/nh.2015.32.3.9319 Google Scholar
  6. Botelho PB, Galasso M, Dias V, Mandrioli M, Lobato L, Rodriguez-Estrada M, Castro I (2014) Oxidative stability of functional phytosterol-enriched dark chocolate. LWT Food Sci Technol 55:444–451.  https://doi.org/10.1016/j.lwt.2013.09.002 CrossRefGoogle Scholar
  7. Branen AL, Keenan TW (1971) Diacetyl and acetoin production by Lactobacillus casei. Appl Microbiol 22:517–521Google Scholar
  8. Descalzo AM, Insani EM, Biolatto A, Sancho AM, García PT, Pensel NA, Josifovich JA (2005) Influence of pasture or grain-based diets supplemented with vitamin E on antioxidant/oxidative balance of Argentine beef. Meat Sci 70:35–44.  https://doi.org/10.1016/j.meatsci.2004.11.018 CrossRefGoogle Scholar
  9. Dhuique-Mayer C, Servent A, Descalzo A, Mouquet-Rivier C, Amiot M-J, Achir N (2016) Culinary practices mimicking a polysaccharide-rich recipe enhance the bioaccessibility of fat-soluble micronutrients. Food Chem 210:182–188.  https://doi.org/10.1016/j.foodchem.2016.04.037 CrossRefGoogle Scholar
  10. Gorton D, Bullen CR, Mhurchu CN (2010) Environmental influences on food security in high income countries. Nutr Rev 68:1–29.  https://doi.org/10.1111/j.1753-4887.2009.00258.x CrossRefGoogle Scholar
  11. Gullón B, Pereira M, Mestres C, Hounhouigan J, Pallet D, Alonso JL, Pintado M (2015) Assessment of prebiotic potential of Akpan-yoghurt-like product and effects on the human intestinal microbiota. J Funct Food 19:545–553.  https://doi.org/10.1016/j.jff.2015.09.026 CrossRefGoogle Scholar
  12. Gylling H, Plat J, Turley S, Ginsberg HN, Ellegård L, Jessup W, Jones PJ, Lütjohann D, Maerz W, Masana L, Silbernagel G, Staels B, Borén J, Catapano AL, De Backer G, Deanfield J, Descamps OS, Kovanen PT, Riccardi G, Tokgözoglu L, Chapman MJ (2014) Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 232:346–360.  https://doi.org/10.1016/j.atherosclerosis.2013.11.043 CrossRefGoogle Scholar
  13. Hallikainen MA, Uusitupa MI (1999) Effects of 2 low-fat stanol ester-containing margarines on serum cholesterol concentrations as part of a low-fat diet in hypercholesterolemic subjects. Am J Clin Nutr 69:403–410CrossRefGoogle Scholar
  14. Hur SJ, Lee SY, Kim YC, Choi I, Kim GB (2014) Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem 160:346–356.  https://doi.org/10.1016/j.foodchem.2014.03.112 CrossRefGoogle Scholar
  15. Kearney J (2010) Food consumption trends and drivers. Philos Trans R Soc Lond B Biol Sci 365:2793–2807.  https://doi.org/10.1098/rstb.2010.0149 CrossRefGoogle Scholar
  16. Kmiecik D, Korczak J, Rudzińska M, Gramza-Michałowska A, Hęś M, Kobus-Cisowska J (2015) Stabilisation of phytosterols by natural and synthetic antioxidants in high temperature conditions. Food Chem 173:966–971.  https://doi.org/10.1016/j.foodchem.2014.10.074 CrossRefGoogle Scholar
  17. Kohajdova Z (2015) Fermented cereal products. In: Ray BC, Montet D (eds) Microorganisms and fermentation of traditional foods. CRC Press, Boca Raton, pp 78–107Google Scholar
  18. Lampi AM, Damerau A, Li J, Moisio T, Partanen R, Forssell P, Piironen V (2015) Changes in lipids and volatile compounds of oat flours and extrudates during processing and storage. J Cereal Sci 62:102–109.  https://doi.org/10.1016/j.jcs.2014.12.011 CrossRefGoogle Scholar
  19. Lee MJ, Feng W, Yang L, Chen Y-K, Chi E, Liu A, Yang CS (2017) Methods for efficient analysis of tocopherols, tocotrienols and their metabolites in animal samples with HPLC-EC. J Food Drug Anal.  https://doi.org/10.1016/j.jfda.2017.07.012 Google Scholar
  20. Ling WH, Jones PJH (1995) Dietary phytosterols: a review of metabolism, benefits and side effects. Life Sci 57:195–206.  https://doi.org/10.1016/0024-3205(95)00263-6 CrossRefGoogle Scholar
  21. NMX-F-317-S-1978 (1978) Determination of pH in foods. Normas mexicanas. Dirección General de Normas. http://www.colpos.mx/bancodenormas/nmexicanas/NMX-F-317-S-1978.PDF. Accessed 24 April 2016
  22. Oboh G, Amusan TV (2009) Nutritive value and antioxidant properties of cereal gruels produced from fermented maize and sorghum. Food Biotechnol 23:17–31.  https://doi.org/10.1080/08905430802671899 CrossRefGoogle Scholar
  23. Rondanelli M, Monteferrario F, Faliva MA, Perna S, Antoniello N (2013) Key points for maximum effectiveness and safety for cholesterol-lowering properties of plant sterols and use in the treatment of metabolic syndrome. J Sci Food Agric 93:2605–2610.  https://doi.org/10.1002/jsfa.6174 CrossRefGoogle Scholar
  24. Rossetti L, Langman L, Grigioni GM, Biolatto A, Sancho AM, Comerón E, Descalzo AM (2010) Antioxidant status and odor profile in milk from silage or alfalfa-fed cows. Aus J Dairy Technol 65:3–9Google Scholar
  25. Rudzińska M, Przybylski R, Wąsowicz E (2014) Degradation of phytosterols during storage of enriched margarines. Food Chem 142:294–298.  https://doi.org/10.1016/j.foodchem.2013.07.041 CrossRefGoogle Scholar
  26. Sacca C, Adinsi L, Anihouvi V, Akissoé N, Dalode G, Mestres C, Jacobs A, Dlamini N, Pallet D, Hounhouigan DJ (2012) Production, consumption, and quality attributes of Akpan—a yoghurt-like cereal product from West Africa. Food Chain 2:207–220.  https://doi.org/10.3362/2046-1887.2012.018 CrossRefGoogle Scholar
  27. Saraiva D, Castilho MC, Martins MR, Noronha da Silveira MI, Ramos F (2011) Evaluation of phytosterols in milk and yogurts used as functional foods in Portugal. Food Anal Method 4:28–34.  https://doi.org/10.1007/s12161-010-9131-y CrossRefGoogle Scholar
  28. Semeniuc CA, Vladimiro C, Mandrioli M, Muste S, Borsari A, Rodriguez-Estrada MT (2015) Stability of flavoured phytosterol-enriched drinking yogurts during storage as affected by different packaging materials. Eur Food Res Technol 242:431–439.  https://doi.org/10.1007/s00217-015-2254-3 CrossRefGoogle Scholar
  29. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379CrossRefGoogle Scholar
  30. Slavin M, Yu LL (2012) A single extraction and HPLC procedure for simultaneous analysis of phytosterols, tocopherols and lutein in soybeans. Food Chem 135:2789–2795.  https://doi.org/10.1016/j.foodchem.2012.06.043 CrossRefGoogle Scholar
  31. Wang B, Huang Q, Venkitasamy C, Chai H, Gao H, Cheng N, Cao W, Lv X, Pan Z (2016) Changes in phenolic compounds and their antioxidant capacities in jujube (Ziziphusjujuba Miller) during three edible maturity stages. LWT Food Sci Technol 66:56–62.  https://doi.org/10.1016/j.lwt.2015.10.005 CrossRefGoogle Scholar
  32. Weber D, Grune T (2012) The contribution of beta-carotene to vitamin A supply of humans. Mol Nutr Food Res 56:251–258.  https://doi.org/10.1002/mnfr.201100230 CrossRefGoogle Scholar
  33. Witting LA, Horwitt MK (1964) Effect of degree of fatty acid unsaturation in tocopherol deficiency-induced creatinuria. J Nutr 82:19–23CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2018

Authors and Affiliations

  • Adriana María Descalzo
    • 1
    • 5
  • Sergio Aníbal Rizzo
    • 4
    • 5
  • Adrien Servent
    • 2
    • 3
  • Luciana Rossetti
    • 4
  • Marc Lebrun
    • 2
    • 3
  • Carolina Daiana Pérez
    • 4
    • 6
  • Renaud Boulanger
    • 2
    • 3
  • Christian Mestres
    • 2
    • 3
  • Dominique Pallet
    • 2
    • 3
  • Claudie Dhuique-Mayer
    • 2
    • 3
  1. 1.Instituto Nacional de Tecnología Agropecuaria INTA-LABINTEXUMR QualisudMontpellierFrance
  2. 2.CIRADUMR QualisudMontpellierFrance
  3. 3.Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgroUniversité d’Avignon, Université de La RéunionMontpellierFrance
  4. 4.Centro de Investigación de Agroindustria, InstitutoTecnología de AlimentosInstituto Nacional de Tecnología Agropecuaria (INTA)Morón, Buenos AiresArgentina
  5. 5.Universidad de MorónMorón, Buenos AiresArgentina
  6. 6.Consejo Nacional de Investigaciones Científicas y Técnicas-CONICETBuenos AiresArgentina

Personalised recommendations