Advertisement

Journal of Food Science and Technology

, Volume 55, Issue 5, pp 1823–1831 | Cite as

Effect of kaolin silver complex on the control of populations of Brettanomyces and acetic acid bacteria in wine

  • P. M. Izquierdo-Cañas
  • R. López-Martín
  • E. García-Romero
  • L. González-Arenzana
  • S. Mínguez-Sanz
  • P. Chatonnet
  • A. Palacios-García
  • A. Puig-Pujol
Original Article

Abstract

In this work, the effects of kaolin silver complex (KAgC) have been evaluated to replace the use of SO2 for the control of spoilage microorganisms in the winemaking process. The results showed that KAgC at a dose of 1 g/L provided effective control against the development of B. bruxellensis and acetic acid bacteria. In wines artificially contaminated with an initial population of B. bruxellensis at 104 CFU/mL, a concentration proven to produce off flavors in wine, only residual populations of the contaminating yeast remained after 24 days of contact with the additive. Populations of acetic bacteria inoculated into wine at concentrations of 102 and 104 CFU/mL were reduced to negligible levels after 72 h of treatment with KAgC. The antimicrobial effect of KAgC against B. bruxellensis and acetic bacteria was also demonstrated in a wine naturally contaminated by these microorganisms, decreasing their population in a similar way to a chitosan treatment. Related to this effect, wines with KAgC showed lower concentrations of acetic acid and 4-ethyl phenol than wines without KAgC. The silver concentration from KAgC that remained in the finished wines was below the legal limits. These results demonstrated the effectiveness of KAgC to reduce spoilage microorganisms in winemaking.

Keywords

Acetic acid bacteria Brettanomyces bruxellensis Chitosan Kaolin silver Wine 

References

  1. Blateyron-Pic L, Bornet A, Brandam C, Jentzer JB, Granes D, Heras JM, Joannis-Cassan C, Pillet O, Sieczkowski N, Tailandier P (2012) Le chitosane d’origine fongique, un nouvel outil de choix pour lutter contre Brettanomyces dans les vins. Rév Oenol 143:27–28Google Scholar
  2. Capozzi V, Di Toro MR, Grieco F, Michelotti V, Salma M, Lamontanara A, Russo P, Orrù L, Alexandre H, Spano G (2016) Viable but not culturable (VBNC) state of Brettanomyces bruxellensis in wine: new insights on molecular basis of VBNC behaviour using a transcriptomic approach. Food Microbiol 59:196–204CrossRefGoogle Scholar
  3. Chatonnet P, Dubourdieu D, Boidron J, Pons M (1992) The origin of ethylphenols in wines. J Sci Food Agric 60:165–178CrossRefGoogle Scholar
  4. Chatonnet P, Dubourdieu D, Boidron JN (1995) The influence of Brettanomyces/Dekkera sp. yeasts and lactic acid bacteria on the ethylphenol content of red wines. Am J Enol Vitic 46:463–468Google Scholar
  5. Ðolic MB, Rajakovic-Ognjanovic VN, Strbac SB, Rakocevic ZLJ, Veljovic DN, Dimitrijevic SI, Rajakovic LV (2015) The antimicrobial efficiency of silver activated sorbents. Appl Surf Sci 357:819–831CrossRefGoogle Scholar
  6. Esteve-Zarzoso B, Belloch C, Uruburu F, Querol A (1999) Identification of yeasts by RFLP analysis of the 5,8S rRNA gene and the two ribosomal internal transcriber spacers. Int J Syst Bacteriol 49:329–337CrossRefGoogle Scholar
  7. Ferreira D, Moreira D, Costa EM, Silva S, Pintado MM, Couto JA (2013) The antimicrobial action of chitosan against the wine spoilage yeast Brettanomyces/Dekkera. J Citin Chitosan Sci 1:240–245CrossRefGoogle Scholar
  8. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874CrossRefGoogle Scholar
  9. García-Ruiz A, Requena T, Peláez C, Bartolomé B, Moreno-Arribas MV, Martínez-Cuesta MC (2013) Antimicrobial activity of lacticin 3147 against oenological lactic acid bacteria. Combined effect with other antimicrobial agents. Food Control 32(2):477–483CrossRefGoogle Scholar
  10. García-Ruiz A, Cespo J, López-de-Luzuriaga JM, Olmos ME, Monge M, Rodríguez-Alfaro MP, Martín- Álvarez PJ, Bartolome B, Moreno-Arribas MV (2015) Novel biocompatible silver nanoparticles for controlling the growth of lactic acid bacteria and acetic acid bacteria in wines. Food Control 50:613–619CrossRefGoogle Scholar
  11. Garde-Cerdán T, González-Arenzana L, López N, López R, Santamaría P, López-Alfaro I (2013) Effect of different pulsed electric field treatments on the volatile composition of Graciano, Tempranillo and Grenache grape varieties. Innov Food Sci Emerg Technol 20:91–99CrossRefGoogle Scholar
  12. Garijo P, Gutiérrez AR, López R, Santamaría P, González-Arenzana L, López-Alfaro I, Garde-Cerdán T, Olarte C, Sanz S (2017) Comparison of Brettanomyces yeast presence in young red wines in two consecutive vintages. Eur Food Res Technol 243:827–834CrossRefGoogle Scholar
  13. Gómez-Rivas L, Escudero-Abarca BI, Aguilar-Uscanga MG, Hayward-Jones PM, Mendoza P, Ramírez M (2004) Selective antimicrobial action of chitosan against spoilage yeasts in mixed culture fermentations. J Ind Microbiol Biotechnol 31:16–22CrossRefGoogle Scholar
  14. González-Arenzana L, Sevenich R, Rauh C, López R, Knorr D, López-Alfaro I (2016) Inactivation of Brettanomyces bruxellensis by high hydrostatic pressure technology. Food Control 59:188–195CrossRefGoogle Scholar
  15. Guillamón JM, Mas A (2011) Acetic Acid Bacteria. In: Carrascosa AV, Muñoz R, González R (eds) Molecular wine microbiology. Academic Press, San Diego, pp 227–255CrossRefGoogle Scholar
  16. Guillamón JM, Sabaté J, Barrio E, Cano J, Querol A (1998) Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch Microbiol 169:387–392CrossRefGoogle Scholar
  17. Izquierdo-Cañas PM, García Romero E, Huertas-Nebreda B, Gómez Alonso S (2012) Colloidal silver complex as alternative to sulphur dioxide in winemaking. Food Control 23:73–81CrossRefGoogle Scholar
  18. Monge M, Moreno-Arribas MV (2016) Applications of nanotechnology in wine production and quality and safety control. In: Moreno-Arribas MV, Sualdea BB (eds) Wine safety, consumer preference, and human health. Springer, Berlin, pp 51–69CrossRefGoogle Scholar
  19. Oelofse A, Pretorius IS, Du Toit M (2008) Significance of Brettanomyces and Dekkera during winemaking: a synoptic review. S Afr J Enol Vitic 29(2):129–144Google Scholar
  20. OIV International Organization of Vine and Wine (2009a) OIV/OENO 338A/2009: International code of oenological practices. Wines-treatment using chitosan. OIV, Paris. http://www.oiv.int/public/medias/1082/oiv-oeno-338a-2009-en.pdf
  21. OIV International Organization of Vine and Wine (2009b) OIV/OENO 145/2009: International Code of oenological Practices. Treatment with silver chloride. OIV, Paris. http://www.oiv.int/public/medias/1071/oiv-oeno-145-2009-en.pdf
  22. OIV International Organization of Vine and Wine (2018) Compedium of international methods of wine and must analysis, vol 1–2. OIV, Paris. http://oiv.int/en/technical-standards-and-documents/methods-of-analysis
  23. Petrova B, Cartwright ZM, Edwards ChG (2016) Efectiveness of chitosan preparations aginst Brettanomyces bruxellensis grown in culture media and red wines. J Int Sci Vigne Vin 50(1):49–56Google Scholar
  24. Pires RH, Bruguera MF, Zanoni MVB, Giannini MJSM (2016) Effectiveness of photoelectrocatalysis treatment for the inactivation of Candida parapsilosis sensu stricto in planktonic cultures an biofilms. Appl Catal A Gen 511:149–155CrossRefGoogle Scholar
  25. Puig A, Bertran A, Franquet R, Garcia J, Mínguez S (2011) Brettanomyces bruxellensis prevalence in wines produced and marketed in Spain. Ann Microbiol 61:145–151CrossRefGoogle Scholar
  26. Rubio P, Garijo P, Santamaría P, López R, Martínez J, Gutiérrez AR (2015) Influence of oak origin and ageing conditions on wine spoilage by Brettanomyces yeasts. Food Control 54:176–180CrossRefGoogle Scholar
  27. Schumaker MR, Chandra M, Malfeito-Ferreira M, Ross CF (2017) Influence of Brettanomyces ethylphenols on red wine aroma evaluated by consumers in the United States and Portugal. Food Res Int 100:161–167CrossRefGoogle Scholar
  28. Taillandier P, Joannis-Cassan C, Jentzer JB, Gautier S, Sieczkowski N, Granes D, Brandam C (2014) Effect of fungal chitosan preparation on Brettanomyces bruxellensis, a wine contaminant. J Appl Microbiol 118:123–131CrossRefGoogle Scholar
  29. Umiker NL, Descenzo RA, Lee J, Edwards CG (2013) Removal of Brettanomyces bruxellensis from red wine using membrane filtration. J Food Process Preserv 37:799–805CrossRefGoogle Scholar
  30. Valera MJ, Sainz F, Mas A, Torija MJ (2017) Effect of chitosan on SO2 viability of Acetobacter strains in wine. Int J Food Microbiol 246:1–4CrossRefGoogle Scholar
  31. Vazquez-Muñoz R, Borrego B, Juárez-Moreno K, García-García M, Mota Morales JD, Bogdanchikova N, Huerta-Saquero A (2017) Toxicity of silver nanoparticles in biological systems: does the complexity of biological systems matter? Toxicol Lett 276:11–20CrossRefGoogle Scholar
  32. Wedral D, Shewfelt R, Frank J (2010) The challenge of Brettanomyces in wine. LWT Food Sci Technol 43:1474–1479CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2018

Authors and Affiliations

  • P. M. Izquierdo-Cañas
    • 1
  • R. López-Martín
    • 2
  • E. García-Romero
    • 1
  • L. González-Arenzana
    • 2
  • S. Mínguez-Sanz
    • 3
  • P. Chatonnet
    • 4
  • A. Palacios-García
    • 5
  • A. Puig-Pujol
    • 6
  1. 1.Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF-IVICAM)TomellosoSpain
  2. 2.Instituto de Ciencias de la Vid y el VinoICVV (Gobierno de la Rioja, Universidad de la Rioja, CSIC)LogroñoSpain
  3. 3.CERPTA-Facultad de VeterinariaUniversidad Autónoma de BarcelonaCerdanyolaSpain
  4. 4.Laboratoire ExcellMérignacFrance
  5. 5.Laboratorios Excell Ibérica S.LLogroñoSpain
  6. 6.Institut Català de la Vinya i del Vi (INCAVI-IRTA)Vilafranca del PenedèsSpain

Personalised recommendations