Journal of Food Science and Technology

, Volume 54, Issue 13, pp 4416–4426 | Cite as

Differential accumulation of β-carotene and tissue specific expression of phytoene synthase (MaPsy) gene in banana (Musa sp) cultivars

  • R. DhandapaniEmail author
  • V. P. Singh
  • A. Arora
  • R. C. Bhattacharya
  • Ambika Rajendran
Original Article


An experiment was conducted with twelve major Indian banana cultivars to investigate the molecular relationship between the differential accumulation of β-carotene in peel and pulp of the banana fruit and carotenoid biosynthetic pathway genes. The high performance liquid chromatography showed that all banana cultivars accumulated two–three fold more β-carotene in non-edible portion of the banana fruit. However, Nendran, a famous orange fleshed cultivar of South India, had high β-carotene content (1362 µg/100 g) in edible pulp. The gene encoding Musa accuminata phytoene synthase (MaPsy) was successfully amplified using a pair of degenerate primers designed from Oncidium orchid. The deduced amino acid sequences shared a high level of identity to phytoene synthase gene from other plants. Gene expression analysis confirmed the presence of two isoforms (MaPsy1 and MaPsy2) of MaPsy gene in banana fruits. Presence of two isoforms of MaPsy gene in peel and one in pulp confirmed the differential accumulation of β-carotene in banana fruits. However, Nendran accumulated more β-carotene in edible pulp due to presence of both the isoforms of MaPsy gene. Thus, carotenoid accumulation is a tissue specific process strongly dependent on differential expression pattern of two isoforms of MaPsy gene in banana.


Musa accuminata Nendran Vitamin A Carotenoids β-Carotene Phytoene synthase 

Supplementary material

13197_2017_2918_MOESM1_ESM.doc (4.7 mb)
Supplementary material 1 (DOC 4825 kb)


  1. Akhtar S, Ahmed A, Randhawa MA, Atukorala S, Arlappa N, Ismail T, Ali Z (2013) Prevalence of vitamin A deficiency in South Asia: causes, outcomes, and possible remedies. J Health Popul Nutr 31(4):413–423Google Scholar
  2. Amorim EP, Vilarinhos AD, Cohen KO, Amorim VBO, Santos-Serejo JA, Silva SO, Pestana KN, Santos VJ, Paes NS, Monte DC, Reis RV (2009) Genetic diversity of carotenoid-rich bananas evaluated by diversity arrays technology (DArT). Genet Mol Biol 32:234–245CrossRefGoogle Scholar
  3. Arora A, Choudhary D, Agarwal G, Singh VP (2008) Compositional variation in β-carotene content, carbohydrate and antioxidant enzymes in selected banana cultivars. Int J Food Sci Technol 43(11):1913–1921CrossRefGoogle Scholar
  4. Asif MH, Dhawan P, Nath P (2000) A simple procedure for the isolation of high quality RNA from ripening banana fruit. Plant Mol Biol Report 18:109–115CrossRefGoogle Scholar
  5. Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Müller MJ, Oberritter H, Schulze M, Stehle P, Watzl B (2012) Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 51:637–663CrossRefGoogle Scholar
  6. Borah PK, Gogoi P, Phukan AC, Mahanta J (2006) Traditional medicine in the treatment of gastrointestinal diseases in upper Assam. Indian J Tradit Know 5(4):510–512Google Scholar
  7. Cazzonelli CI (2011) Carotenoids in nature: insights from plants and beyond. Funct Plant Biol 8:833–847CrossRefGoogle Scholar
  8. Darvin ME, Albrecht SW, Lademann J, Vergou T (2011) The role of carotenoids in human skin. Molecules 16:10491–10506CrossRefGoogle Scholar
  9. Englberger L, Darnton-Hill I, Coyne T, Fitzgerald MH, Marks GC (2003) Carotenoid-rich bananas: a potential food source for alleviating vitamin A deficiency. Food Nutr Bull 24:303–318CrossRefGoogle Scholar
  10. Englberger L, Wills RB, Blades B, Dufficy L, Daniells JW, Coyne T (2006) Carotenoid content and flesh colour of selected banana cultivars growing in Australia. Food Nutr Bull 27(4):281–291CrossRefGoogle Scholar
  11. FAOSTAT (2016) Food and Agriculture Organization statistical databases, Available at Accessed 26 May 2016
  12. Fraser PD, Kiano JW, Truesdale MR, Schuch W, Bramley PM (1999) Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid biosynthesis in ripening fruit. Plant Mol Biol 40:687–698CrossRefGoogle Scholar
  13. Ghavami A, Coward WA, Bluck LJ (2012) The effect of food preparation on the bioavailability of carotenoids from carrots using intrinsic labelling. Br J Nutr 107(9):1350–1366CrossRefGoogle Scholar
  14. Giuliano G, Bartley GE, Scolnik PA (1993) Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5:379–387CrossRefGoogle Scholar
  15. Ikoma Y, Matsumoto H, Kato M (2016) Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes. Breed Sci 66:139–147CrossRefGoogle Scholar
  16. Karvouni Z, John I, Taylor JE, Watson CF, Turner AJ, Grierson D (1995) Isolation and characterisation of a melon cDNA clone encoding phytoene synthase. Plant Mol Biol 27:1153–1162CrossRefGoogle Scholar
  17. Li F, Vallabhaneni R, Wurtzel ET (2008) PSY3, A new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol 146:1333–1345CrossRefGoogle Scholar
  18. Mlalazi B, Welsch R, Namanya P, Khanna H, Geijskes RJ, Harrison MD, Harding R, Dale JL, Bateson M (2012) Isolation and functional characterisation of banana phytoene synthase genes as potential cisgenes. Planta 236:1585–1598CrossRefGoogle Scholar
  19. Mohapatra D, Mishra S, Sutar N (2010) Banana and its by-product utilisation: an overview. J Sci Ind Res 69:323–329Google Scholar
  20. Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Plant Metab Synth Biol 8(1):68–82Google Scholar
  21. Paine JA, Shipton A, Chaggar S, Howells RM, Kennedy MJ, Vermon G, Wright SY, Hinchliffe E, Adams JL, Silverstones AL, Drake R (2005) Improving the nutritional value of golden rice through increased provitamin A content. Nat Biotechnol 23:482–487CrossRefGoogle Scholar
  22. Peach K, Tracy M (1995) Rapid and accurate method for estimation of beta- carotene Methods of plant analysis. Springer, Berlin, pp 308–314Google Scholar
  23. Pinazo-Duran MD, Gallego-Pinazo R, Garcia-Medina JJ, Zanon-Moreno V, Nucci C, Dolz-Marco R, Martinez-Castillo S, Galbis-Estrada C, Marco-Ramirez C, Lopez-Galvez MI, Galarreta DJ, Diaz-Llopis M (2014) Oxidative stress and its downstream signalling in aging eyes. Clin Interv Aging 9:637–652CrossRefGoogle Scholar
  24. Purkayastha J, Nath SC (2006) Biological activities of ethanomedicinal claims of some plant species of Assam. Indian J Tradit Know 5(2):229–236Google Scholar
  25. Romer S, Hugueney P, Bouvier F, Camara B, Kuntz M (1993) Expression of the genes encoding the early carotenoid biosynthetic enzymes in Capsicum annuum. Biochem Biophys Res Commun 196:1414–1421CrossRefGoogle Scholar
  26. Salvini M, Bernini A, Fambrini M, Pugliesi C (2005) cDNA cloning and expression of the phytoene synthase gene in sunflower. J Plant Physiol 162:479–484CrossRefGoogle Scholar
  27. Skelton RL, Yu Q, Srinivasan R, Manshardt R, Moore PH, Ming R (2006) Tissue differential expression of lycopene β-cyclase gene in papaya. Cell Res 16:731–739CrossRefGoogle Scholar
  28. Smolikova GN, Medvedev SS (2015) Seed carotenoids: synthesis, diversity, and functions. Russ J Plant Physiol 62(1):1–13CrossRefGoogle Scholar
  29. Ye X, Babili SA, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305CrossRefGoogle Scholar
  30. Yuan H, Zhang J, Nageswaran D, Li L (2015) Carotenoid metabolism and regulation in horticultural crops. Hort Res 2:15036. doi: 10.1038/hortres.2015.36 CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2017

Authors and Affiliations

  • R. Dhandapani
    • 1
    Email author
  • V. P. Singh
    • 1
  • A. Arora
    • 1
  • R. C. Bhattacharya
    • 2
  • Ambika Rajendran
    • 3
  1. 1.Division of Plant PhysiologyICAR-Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.ICAR-National Research Centre for Plant BiotechnologyNew DelhiIndia
  3. 3.Division of GeneticsICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations