Skip to main content

Biofunctional properties of bioactive peptide fractions from protein isolates of moringa seed (Moringa oleifera)

Abstract

Moringa oleifera (Moringaceae) is a specie of significant importance because of its multiple nutraceutical properties, that has led to increase in its consumption. The seeds contain a high percentage of protein (37.48%). However, little is known about the bioactive properties of these proteins and peptides, especially those generated by enzymatic hydrolysis. The objective of this study was to evaluate the biofunctional properties of total hydrolysates (TH) and peptide fractions from protein isolates of moringa seeds. Isoelectric protein isolates were prepared and TH were obtained by digestion with trypsin, chymotrypsin and pepsin–trypsin for 2.5 and 5 h. TH were fractioned by ultrafiltration (UF) with a 10 kDa membrane to generate the peptide fractions. In all treatments, the antioxidant capacity was significantly higher in peptide fractions > 10 kDa with 5 h of hydrolysis. The results showed that the fraction > 10 kDa of pepsin–trypsin digested for 5 h presented a better Angiotensin Converting Enzyme inhibition (ACE-I) activity with an IC50 of 0.224 μg/μl. Also, antidiabetic activity was enhanced in pepsin–trypsin treatment with 5 h of hydrolysis showing an IC50 of 0.123 μg/μl. Finally, this study showed that hydrolysates of moringa seed proteins had excellent in vitro nutraceutical potential.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Agrawal H, Shee C, Sharma AK (2007) Isolation of a 66KDa protein with coagulation activity from seeds of Moringa oleifera. Res J Agric Biol Sci 3(5):418–421

    CAS  Google Scholar 

  • Anwar F, Latif S, Ashraf M, Gilani AH (2007) Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res 21(1):17–25

    CAS  Article  Google Scholar 

  • AOAC (1995) Official methods of analysis, vol 4, 16th edn. Association of Official Analytical Chemists, Arlington, pp 1–45

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    CAS  Article  Google Scholar 

  • Chen HM, Muramoto K, Yamauchi F, Fujimoto K, Nokihara K (1998) Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J Agric Food Chem 46(1):49–53

    CAS  Article  Google Scholar 

  • Coates W (2011) Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Ind Crops Prod 34(2):1366–1371

    Article  Google Scholar 

  • Ghebremichael KA, Gunaratna KR, Henriksson H, Brumer H, Dalhammar G (2005) A simple purification and activity assay of the coagulant protein from Moringa oleifera seed. Water Res 39(11):2338–2344

    CAS  Article  Google Scholar 

  • Hayakari M, Kondo Y, Izumi H (1978) A rapid and simple spectrophotometric assay of angiotensin-converting enzyme. Anal Biochem 84(2):361–369

    CAS  Article  Google Scholar 

  • Ijarotimi OS, Adeoti OA, Ariyo O (2013) Comparative study on nutrient composition, phytochemical, and functional characteristics of raw, germinated, and fermented Moringa oleifera seed flour. Food Sci Nutr 1(6):452–463

    CAS  Article  Google Scholar 

  • Jung IL (2014) Soluble extract from Moringa oleifera leaves with a new anticancer activity. PLoS ONE 9(4):e95492. doi:10.1371/journal.pone.0095492

    Article  Google Scholar 

  • Jung WK, Park PJ, Byun HG, Moon SH, Kim SK (2005) Preparation of hoki (Johnius belengerii) bone oligophosphopeptide with a high affinity to calcium by carnivorous intestine crude proteinase. Food Chem 91(2):333–340

    CAS  Article  Google Scholar 

  • Kasolo JN, Bimenya GS, Ojok L, Ochieng J, Ogwal-Okeng JW (2010) Phytochemicals and uses of Moringa oleifera leaves in Ugandan rural communities. J Med Plants Res 4(9):753–757

    Google Scholar 

  • Kitts DD, Weiler K (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9(16):1309–1323

    CAS  Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  Article  Google Scholar 

  • Li GH, Liu H, Shi YH, Le GW (2005) Direct spectrophotometric measurement of angiotensin I-converting enzyme inhibitory activity for screening bioactive peptides. J Pharm Biomed Anal 37(2):219–224

    CAS  Article  Google Scholar 

  • Li Y, Jiang B, Zhang T, Mu W, Liu J (2008) Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem 106(2):444–450

    CAS  Article  Google Scholar 

  • Lopez-Sanchez J, Ponce-Alquicira E, Pedroza-Islas R, de la Peña-Diaz A, Soriano-Santos J (2016) Effects of heat and pH treatments and in vitro digestion on the biological activity of protein hydrolysates of Amaranthus hypochondriacus L. grain. J Food Sci. doi:10.1007/s13197-016-2428-0

    Google Scholar 

  • Mehta S, Rai PK, Rai NK, Rai AK, Bicanic D, Watal G (2011) Role of spectral studies in detection of antibacterial phytoelements and phytochemicals of Moringa oleifera. Food Biophys 6(4):497–502

    Article  Google Scholar 

  • Nair SS, Kavrekar V, Mishra A (2013) In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Eur J Exp Biol 3(1):128–132

    Google Scholar 

  • Najafian L, Babji AS (2014) Production of bioactive peptides using enzymatic hydrolysis and identification antioxidative peptides from patin (Pangasius sutchi) sarcoplasmic protein hydolysate. J Funct Foods 9:280–289

    CAS  Article  Google Scholar 

  • Pedroche J, Yust MM, Lqari H, Girón-Calle J, Alaiz M, Vioque J, Millán F (2004) Brassica carinata protein isolates: chemical composition, protein characterization and improvement of functional properties by protein hydrolysis. Food Chem 88(3):337–346

    CAS  Article  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9):1231–1237

    CAS  Article  Google Scholar 

  • Rebello CJ, Greenway FL, Finley JW (2014) A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes Rev 15(5):392–407

    CAS  Article  Google Scholar 

  • Rosenthal A, Pyle DL, Niranjan K, Gilmour S, Trinca L (2001) Combined effect of operational variables and enzyme activity on aqueous enzymatic extraction of oil and protein from soybean. Enzyme Microb Technol 28(6):499–509

    CAS  Article  Google Scholar 

  • Ruiz-Ruiz J, Dávila-Ortiz G, Chel-Guerrero L, Betancur-Ancona D (2013) Angiotensin I-converting enzyme inhibitory and antioxidant peptide fractions from hard-to-cook vean enzymatic hydrolysates. J Food Biochem 37(1):26–35

    CAS  Article  Google Scholar 

  • Salcedo-Chávez B, Osuna-Castro JA, Guevata-Lara F, Dominguez-Dominguez J, Paredes-López O (2002) Optimization of the isoelectric precipitation method to obtain protein isolates from amaranth (Amarathus cruentus) seeds. J Agric Food Chem 50(22):6515–6520

    Article  Google Scholar 

  • Santos AF, Paiva PM, Teixeira JA, Brito AG, Coelho LC, Nogueira R (2012) Coagulant properties of Moringa oleifera protein preparations: application to humic acid removal. Environ Technol 33(1):69–75

    CAS  Article  Google Scholar 

  • Segura-Campos MR, Salazar-Vega IM, Chel-Guerrero LA, Betancur-Ancona DA (2013) Biological potential of chia (Salvia hispanica L.) protein hydrolysates and their incorporation into functional foods. LWT Food Sci Technol 50(2):723–731

    CAS  Article  Google Scholar 

  • Segura-Campos MR, Tovar-Benítez T, Chel-Guerrero L, Betancur-Ancona D (2014) Functional and bioactive properties of Velvet bean (Mucuna pruriens) protein hydrolysates produced by enzymatic treatments. J Food Meas Charact 8(2):61–69

    Article  Google Scholar 

  • Singh BP, Vij S, Hati S (2014) Functional significance of bioactive peptides derived from soybean. Peptides 54:171–179

    CAS  Article  Google Scholar 

  • Tavano OL (2013) Protein hydrolysis using proteases: an important tool for food biotechnology. J Mol Catal B Enzyme 90:1–11

    CAS  Article  Google Scholar 

  • Torruco-Uco J, Chel-Guerrero L, Martínez-Ayala A, Dávila-Ortíz G, Betancur-Ancona D (2009) Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris seeds. LWT-Food Sci Technol 42(10):1597–1604

    CAS  Article  Google Scholar 

  • Vats S, Gupta T (2017) Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan. India. Physiol Mol Biol Plants 23(1):239–248

    CAS  Article  Google Scholar 

  • Visvanathan R, Jayathilake C, Liyanage R (2016) A simple microplate-based method for the determination of α-amylase activity using the glucose assay kit (GOD method). Food Chem 211:853–859

    CAS  Article  Google Scholar 

  • Yu Z, Yin Y, Zhao W, Liu J, Chen F (2012) Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase. Food Chem 135(3):2078–2085

    CAS  Article  Google Scholar 

  • Zhao Q, Xiong H, Selomulya C, Chen XD, Zhong H, Wang S, Zhou Q (2012) Enzymatic hydrolysis of rice dreg protein: effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food Chem 134(3):1360–1367

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Programa de Apoyo a la Investigación Científica y Tecnológica (PAICYT) of Universidad Autonoma de Nuevo Leon (Grant Number CT303-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sugey Ramona Sinagawa García.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González Garza, N.G., Chuc Koyoc, J.A., Torres Castillo, J.A. et al. Biofunctional properties of bioactive peptide fractions from protein isolates of moringa seed (Moringa oleifera). J Food Sci Technol 54, 4268–4276 (2017). https://doi.org/10.1007/s13197-017-2898-8

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2898-8

Keywords

  • Moringa oleifera
  • Protein isolates
  • Bioactive peptides
  • Antioxidant
  • Anti-hypertensive
  • Anti-diabetic activity