Skip to main content

Advertisement

Log in

Measurement of ripening of raspberries (Rubus idaeus L) by near infrared and colorimetric imaging techniques

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

This work includes the evaluation of 168 samples of raspberries ‘Glen Lyon’, representing whole maturation period, by colorimetric and near infrared imaging techniques, as well as the quantification of total phenols, total anthocyanins and antioxidant activity by chemical methods. Samples showed significant differences depending on the maturation stage using CIELAB colour parameters and total anthocyanins content. The application of partial least squares regression allowed predicting the chemical features from image analysis data, with coefficients of determination (R2) up to 0.75. The best prediction for total anthocyanins including colorimetric data was observed. The proposed methodology can be used as a reference method for assessing important quality attributes of raspberries. Moreover, it is useful, rapid and accurate automatic inspection method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. doi:10.1006/abio.1996.0292

    Article  CAS  Google Scholar 

  • Berns RS, Billmeyer FW, Saltzman M (2000) Billmeyer and Saltzman’s principles of color technology, 3rd edn. Wiley, New York

    Google Scholar 

  • Brosnan T, Sun D-W (2004) Improving quality inspection of food products by computer vision—a review. J Food Eng 61:3–16. doi:10.1016/S0260-8774(03)00183-3

    Article  Google Scholar 

  • Clark CJ, McGlone VA, Requejo C et al (2003) Dry matter determination in “Hass” avocado by NIR spectroscopy. Postharvest Biol Technol 29:301–308. doi:10.1016/S0925-5214(03)00046-2

    Article  CAS  Google Scholar 

  • Dobson P, Graham J, Stewart D et al (2012) Over-seasons analysis of quantitative trait loci affecting phenolic content and antioxidant capacity in raspberry. J Agric Food Chem 60:5360–5366. doi:10.1021/jf3005178

    Article  CAS  Google Scholar 

  • Downey G, Kelly JD (2004) Detection and quantification of apple adulteration in diluted and sulfited strawberry and raspberry purées using visible and near-infrared spectroscopy. J Agric Food Chem 52:204–209. doi:10.1021/jf035019a

    Article  CAS  Google Scholar 

  • ElMasry G, Wang N, ElSayed A, Ngadi M (2007) Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. J Food Eng 81:98–107. doi:10.1016/j.jfoodeng.2006.10.016

    Article  CAS  Google Scholar 

  • Esquerre C, Gowen AA, O’Donnell CP, Downey G (2009) Initial studies on the quantitation of bruise damage and freshness in mushrooms using visible-near-infrared spectroscopy. J Agric Food Chem 57:1903–1907. doi:10.1021/jf803090c

    Article  CAS  Google Scholar 

  • Fernández-Vázquez R, Stinco CM, Meléndez-Martínez AJ et al (2011) Visual and instrumental evaluation of orange juice color: a consumers’ preference study. J Sens Stud 26:436–444. doi:10.1111/j.1745-459X.2011.00360.x

    Article  Google Scholar 

  • Gordillo B, Rodríguez-Pulido FJ, Escudero-Gilete ML et al (2012) Comprehensive colorimetric study of anthocyanic copigmentation in model solutions. Effects of pH and molar ratio. J Agric Food Chem 60:2896–2905. doi:10.1021/jf2046202

    Article  CAS  Google Scholar 

  • Hutchings J (2002) 14 Calibrated colour imaging analysis of food. In: MacDougall DB (ed) Colour in food: improving quality. CRC Press, Cambridge

    Google Scholar 

  • Jennings DL (2002) Breeding primocane-fruiting raspberries at medway fruits—progress and prospects. Acta Hort 85–89:2002. doi:10.17660/ActaHortic.2002.585.10

    Google Scholar 

  • Kalt W, Forney CF, Martin A, Prior RL (1999) Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J Agric Food Chem 47:4638–4644. doi:10.1021/jf990266t

    Article  CAS  Google Scholar 

  • Kemsley EK, Holland JK, Defernez M, Wilson RH (1996) Detection of adulteration of raspberry purees using infrared spectroscopy and chemometrics. J Agric Food Chem 44:3864–3870. doi:10.1021/jf960089l

    Article  CAS  Google Scholar 

  • León K, Mery D, Pedreschi F, León J (2006) Color measurement in L∗ a∗ b∗ units from RGB digital images. Food Res Int 39:1084–1091. doi:10.1016/j.foodres.2006.03.006

    Article  Google Scholar 

  • Lin P, Chen Y, He Y (2009) Identification of geographical origin of olive oil using visible and near-infrared spectroscopy technique combined with chemometrics. Food Bioprocess Technol 5:235–242. doi:10.1007/s11947-009-0302-z

    Article  Google Scholar 

  • Luo MR, Cui GH, Li C (2001) British Patent entitled apparatus and method for measuring colour (DigiEye System), Derby University Enterprises Limited

  • Manganaris GA, Goulas V, Vicente AR, Terry LA (2014) Berry antioxidants: small fruits providing large benefits. J Sci Food Agric 94:825–833. doi:10.1002/jsfa.6432

    Article  CAS  Google Scholar 

  • Nicolaï BM, Beullens K, Bobelyn E et al (2007) Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol Technol 46:99–118. doi:10.1016/j.postharvbio.2007.06.024

    Article  Google Scholar 

  • Nogales-Bueno J, Hernández-Hierro JM, Rodríguez-Pulido FJ, Heredia FJ (2014) Determination of technological maturity of grapes and total phenolic compounds of grape skins in red and white cultivars during ripening by near infrared hyperspectral image: a preliminary approach. Food Chem 152:586–591. doi:10.1016/j.foodchem.2013.12.030

    Article  CAS  Google Scholar 

  • Osborne BG, Fearn T, Hindle PT, Osborne BG (1993) Practical NIR spectroscopy with applications in food and beverage analysis, 2nd edn. Longman Scientific & Technical, Wiley, Harlow, New York

    Google Scholar 

  • Pantelidis GE, Vasilakakis M, Manganaris GA, Diamantidis G (2007) Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem 102:777–783. doi:10.1016/j.foodchem.2006.06.021

    Article  CAS  Google Scholar 

  • Piljac-Žegarac J, Šamec D (2011) Antioxidant stability of small fruits in postharvest storage at room and refrigerator temperatures. Food Res Int 44:345–350. doi:10.1016/j.foodres.2010.09.039

    Article  Google Scholar 

  • Pojić MM, Mastilović JS (2012) Near infrared spectroscopy—advanced analytical tool in wheat breeding, trade, and processing. Food Bioprocess Technol 6:330–352. doi:10.1007/s11947-012-0917-3

    Google Scholar 

  • Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396–3402. doi:10.1021/jf9913458

    Article  CAS  Google Scholar 

  • Rodríguez-Pulido FJ, Gordillo B, Lourdes González-Miret M, Heredia FJ (2013) Analysis of food appearance properties by computer vision applying ellipsoids to colour data. Comput Electron Agric 99:108–115. doi:10.1016/j.compag.2013.08.027

    Article  Google Scholar 

  • Rodríguez-Pulido FJ, Hernández-Hierro JM, Nogales-Bueno J et al (2014) A novel method for evaluating flavanols in grape seeds by near infrared hyperspectral imaging. Talanta 122:145–150. doi:10.1016/j.talanta.2014.01.044

    Article  Google Scholar 

  • Sariburun E, Şahin S, Demir C et al (2010) Phenolic content and antioxidant activity of raspberry and blackberry cultivars. J Food Sci 75:C328–C335. doi:10.1111/j.1750-3841.2010.01571.x

    Article  CAS  Google Scholar 

  • Saura-Calixto F, Goñi I (2006) Antioxidant capacity of the Spanish Mediterranean diet. Food Chem 94:442–447. doi:10.1016/j.foodchem.2004.11.033

    Article  CAS  Google Scholar 

  • Seeram NP, Lee R, Scheuller HS, Heber D (2006) Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chem 97:1–11. doi:10.1016/j.foodchem.2005.02.047

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Sun D-W (2004) Computer vision—an objective, rapid and non-contact quality evaluation tool for the food industry. J Food Eng 61:1–2. doi:10.1016/S0260-8774(03)00182-1

    Article  Google Scholar 

  • Valous NA, Mendoza F, Sun D-W, Allen P (2009) Colour calibration of a laboratory computer vision system for quality evaluation of pre-sliced hams. Meat Sci 81:132–141. doi:10.1016/j.meatsci.2008.07.009

    Article  Google Scholar 

  • Williams P (2001) Variables affecting near-infrared reflectance spectroscopic analysis. In: Norris KH, American Association of Cereal Chemists (eds) Near-infrared technology in the agricultural and food industries, 2nd ed. American Association of Cereal Chemists, St. Paul, pp 143–167

  • Williams P, Geladi P, Fox G, Manley M (2009) Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. Anal Chim Acta 653:121–130. doi:10.1016/j.aca.2009.09.005

    Article  CAS  Google Scholar 

  • Wrolstad RE, Durst RW, Lee J (2005) Tracking color and pigment changes in anthocyanin products. Trends Food Sci Technol 16:423–428. doi:10.1016/j.tifs.2005.03.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (PE11-AGR-7843). Moreover, the authors want to thank Surexport Cía. Agrícola S.L. for supplying the samples and collaborate with the Color y Calidad de Alimentos research group. Francisco J. Rodríguez-Pulido also thanks VPPI-Universidad de Sevilla for a postdoctoral grant. Finally, we are indebted to the staff of Biology Service (SGI, Universidad de Sevilla) for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lourdes González-Miret.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 9836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Pulido, F.J., Gil-Vicente, M., Gordillo, B. et al. Measurement of ripening of raspberries (Rubus idaeus L) by near infrared and colorimetric imaging techniques. J Food Sci Technol 54, 2797–2803 (2017). https://doi.org/10.1007/s13197-017-2716-3

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2716-3

Keywords

Profiles

  1. Francisco J. Rodríguez-Pulido