Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality

Abstract

Bacillus spp. are widely used in animal production for their probiotic properties. In many animal species, feed supplementation with specific Bacillus strains can provide numerous benefits including improvement in digestibility, the gut microbiota and immune modulation, and growth performance. Bacilli are fed to animals as spores that can sustain the harsh feed processing and long storage. However, the spores are metabolically quiescent and it is widely accepted that probiotics should be in a metabolically active state to perform certain probiotic functions like secretion of antimicrobial compounds and enzymes, synthesis of short chain fatty acids, and competition for essential nutrients. These functions should become active in the host gastrointestinal tract (GIT) soon after digestion of spores in order to contribute to microbiota and host metabolism. Considering that bacterial spores are metabolically dormant and many health benefits are provided by vegetative cells, it is of particular interest to discuss the life cycle of Bacillus in animal GIT. This review aims to capture the main characteristics of spores and vegetative cells and to discuss the latest knowledge in the life cycle of beneficial Bacillus in various intestinal environments. Furthermore, we review how the life cycle may influence probiotic functions of Bacillus and their benefits for human and animal health.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Abhyankar WR, Kamphorst K, Swarge BN, van Veen H, van der Wel NN, Brul S, de Koster CG, de Koning LJ (2016) The influence of sporulation conditions on the spore coat protein composition of Bacillus subtilis Spores. Front Microbiol 7:1636

    Article  Google Scholar 

  2. Bagherzadeh Kasmani F, Karimi Torshizi MA, Allameh A, Shariatmadari F (2012) A novel aflatoxin-binding Bacillus probiotic: performance, serum biochemistry, and immunological parameters in Japanese quail. Poult Sci 91:1846–1853

    CAS  Article  Google Scholar 

  3. Balassa G, Milhaud P, Raulet E, Silva MT, Sousa JCF (1979) A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores. J Gen Microbiol 110:365–379

    CAS  Article  Google Scholar 

  4. Barnes AG, Cerovic V, Hobson PS, Klavinskis LS (2007) Bacillus subtilis spores: a novel microparticle adjuvant which can instruct a balanced Th1 and Th2 immune response to specific antigen. Eur J Immunol 37:1538–1547

    CAS  Article  Google Scholar 

  5. Baweja RB, Zaman MS, Mattoo AR, Sharma K, Tripathi V, Aggarwal A, Dubey GP, Kurupati RK, Ganguli M, Chaudhury NK, Sen S, Das TK, Gade WN, Singh Y (2008) Properties of Bacillus anthracis spores prepared under different environmental conditions. Arch Microbiol 189:71–79

    CAS  Article  Google Scholar 

  6. Bernlohr RW, Leitzmann C (1969) Control of sporulation. In: Gould GW, Hurst A (eds) The bacterial spore. Academic Press, London, pp 183–213

    Google Scholar 

  7. Beseres JJ, Lawrence AL, Feller RJ (2006) Practical equivalence of laboratory and field measurements of gut passage time in two penaeid shrimp species. Mar Ecol-Prog Ser 309:221–231

    Article  Google Scholar 

  8. Broeckx G, Vandenheuvel D, Claes IJ, Lebeer S, Kiekens F (2016) Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. Int J Pharm 505:303–318

    CAS  Article  Google Scholar 

  9. Cano RJ, Borucki MK (2012) Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican Amber. Science 268:1060–1064

    Article  Google Scholar 

  10. Cartman ST, La Ragione RM, Woodward MJ (2008) Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Appl Environ Microb 74:5254–5258

    CAS  Article  Google Scholar 

  11. Casula G, Cutting SM (2002) Bacillus probiotics: spore germination in the gastrointestinal tract. Appl Environ Microb 68:2344–2352

    CAS  Article  Google Scholar 

  12. Ceuppens S, Boon N, Rajkovic A, Heyndrickx M, Van de Wiele T, Uyttendaele M (2010) Quantification methods for Bacillus cereus vegetative cells and spores in the gastrointestinal environment. J Microbiol Meth 83:202–210

    CAS  Article  Google Scholar 

  13. Ceuppens S, Uyttendaele M, Drieskens K, Heyndrickx M, Rajkovic A, Boon N, Van de Wiele T (2012a) Survival and germination of Bacillus cereus spores without outgrowth or enterotoxin production during in vitro simulation of gastrointestinal transit. Appl Environ Microbiol 78:7698–7705

    CAS  Article  Google Scholar 

  14. Ceuppens S, Uyttendaele M, Drieskens K, Rajkovic A, Boon N, Wiele TV (2012b) Survival of Bacillus cereus vegetative cells and spores during in vitro simulation of gastric passage. J Food Prot 75:690–694

    CAS  Article  Google Scholar 

  15. Ceuppens S, Uyttendaele M, Hamelink S, Boon N, Van de Wiele T (2012c) Inactivation of Bacillus cereus vegetative cells by gastric acid and bile during in vitro gastrointestinal transit. Gut Pathogens 3:11

    Article  Google Scholar 

  16. Ceuppens S, Van de Wiele T, Rajkovic A, Ferrer-Cabaceran T, Heyndrickx M, Boon N, Uyttendaele M (2012d) Impact of intestinal microbiota and gastrointestinal conditions on the in vitro survival and growth of Bacillus cereus. Int J Food Microbiol 155:241–246

    Article  Google Scholar 

  17. Cheng BC, Wan CX, Yang SL, Yu HY, Wei H, Liu JS, Tian WH, Zeng M (2010) Detoxification of deoxynivalenol by Bacillus strains. J Food Saf 30:599–614

    CAS  Google Scholar 

  18. Ciffo F, Dacarro C, Giovanetti M, Mazza PG (1987) Gastric resistance of Bacillus subtilis spores used in oral bacteriotherapy: in vitro studies. Farmacia Terapia 4:163–169

    Google Scholar 

  19. Clavel T, Carlin F, Lairon D, Nguyen-The C, Schmitt P (2004) Survival of Bacillus cereus spores and vegetative cells in acid media simulating human stomach. J Appl Microbiol 97:214–219

    CAS  Article  Google Scholar 

  20. Clements LD, Miller BS, Streips UN (2001) Comparative growth analysis of the facultative anaerobes Bacillus subtilis, Bacillus licheniformis, and Escherichia coli. Syst Appl Microbiol 25:284–286

    Article  Google Scholar 

  21. Cutting SM (2011) Bacillus probiotics. Food Microbiol 28(2):214–220

    Article  Google Scholar 

  22. Dänicke S, Döll S (2010) A probiotic feed additive containing spores of Bacillus subtilis and B. licheniformis does not prevent absorption and toxic effects of the Fusarium toxin deoxynivalenol in piglets. Food Chem Toxicol 48:152–158

    Article  Google Scholar 

  23. de Souza RD, Batista MT, Luiz WB, Cavalcante RCM, Amorim JH, Pereira Bizerra RS, Gimens Martins E, de Souza Ferreira LC (2014) Bacillus subtilis spores as vaccine adjuvants: further insights into the mechanisms of action. PLoS ONE 9:e87454

    Article  Google Scholar 

  24. Duc le H, Hong HA, Cutting SM (2003a) Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine 21:4215–4224

    CAS  Article  Google Scholar 

  25. Duc le LH, Hong HA, Fairweather N, Ricca E, Cutting SM (2003b) Bacterial spores as vaccine vehicles. Infect Immun 71:2810–2818

    CAS  Article  Google Scholar 

  26. Duc le H, Hong HA, Barbosa TM, Henriques AO, Cutting SM (2004a) Characterization of Bacillus probiotics available for human use. Appl Environ Microb 70:2161–2171

    CAS  Article  Google Scholar 

  27. Duc le H, Hong HA, Uyen NQ, Cutting SM (2004b) Intracellular fate and immunogenicity of B. subtilis spores. Vaccine 22:1873–1885

    CAS  Article  Google Scholar 

  28. Fan Y, Zhao L, Ma Q, Li X, Shi H, Zhou T, Zhang J, Ji C (2013) Effects of Bacillus subtilis ANSB060 on growth performance, meat quality and aflatoxin residues in broilers fed moldy peanut meal naturally contaminated with aflatoxins. Food Chem Toxicol 59:748–753

    CAS  Article  Google Scholar 

  29. Ghelardi E, Celandroni F, Salvetti S, Gueye SA, Lupetti A, Senesi S (2015) Survival and persistence of Bacillus clausii in the human gastrointestinal tract following oral administration as spore-based probiotic formulation. J Appl Microbiol 119:552–559

    CAS  Article  Google Scholar 

  30. González-Pastor JE (2012) Multicellularity and social behaviour in Bacillus subtilis. In: Graumann P (ed) Bacillus: cellular and molecular biology, 2nd edn. University of Freiburg, Caister Academic Press, Norfolk, pp 351–376

    Google Scholar 

  31. Grossman AD, Losick R (1988) Extracellular control of spore formation in Bacillus subtilis. Proc Natl Acad Sci USA 85:4369–4373

    CAS  Article  Google Scholar 

  32. Harimawan A, Zhong S, Lim CT, Ting YP (2013) Adhesion of B. subtilis spores and vegetative cells onto stainless steel-DLVO theories and AFM spectroscopy. J Colloid Interf Sci 405:233–241

    CAS  Article  Google Scholar 

  33. Hatanaka M, Nakamura Y, Maathuis AJ, Venema K, Murota I, Yamamoto N (2012) Influence of Bacillus subtilis C-3102 on microbiota in a dynamic in vitro model of the gastrointestinal tract simulating human conditions. Benef Microbes 3:229–236

    CAS  Article  Google Scholar 

  34. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Berni Canani R, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514

    Article  Google Scholar 

  35. Hoa TT, Duc LH, Isticato R, Baccigalupi L, Ricca E, Van PH, Cutting SM (2001) Fate and dissemination of Bacillus subtilis spores in a murine model. Appl Environ Microb 67:3819–3823

    CAS  Article  Google Scholar 

  36. Hong HA, To E, Fakhry S, Baccigalupi L, Ricca E, Cutting SM (2009) Defining the natural habitat of Bacillus spore-formers. Res Microbiol 160:375–379

    Article  Google Scholar 

  37. Hosoi T, Ametani A, Kiuchi K, Kaminogawa S (1999) Changes in fecal microflora induced by intubation of mice with Bacillus subtilis (natto) spores are dependent upon dietary components. Can J Microbiol 45:59–66

    CAS  Article  Google Scholar 

  38. Huang JM, La Ragione RM, Cooley WA, Todryk S, Cutting SM (2008) Cytoplasmic delivery of antigens, by Bacillus subtilis enhances Th1 responses. Vaccine 26:6043–6052

    CAS  Article  Google Scholar 

  39. Huq T, Khan A, Khan RA, Riedl B, Lacroix M (2013) Encapsulation of probiotic bacteria in biopolymeric system. Crit Rev Food Sci Nutr 53:909–916

    CAS  Article  Google Scholar 

  40. Hutchison EA, Miller DA, Angert ER (2014) Sporulation in bacteria: beyond the standard model. Microbiol Spectr. doi:10.1128/microbiolspec

    Google Scholar 

  41. Hyronimus B, Le Marrec C, Sassi AH, Deschamps A (2000) Acid and bile tolerance of spore-forming lactic acid bacteria. Int J Food Microbiol 61:193–197

    CAS  Article  Google Scholar 

  42. Jadamus A, Vahjen W, Simon O (2001) Growth behaviour of a spore forming probiotic strain in the gastrointestinal tract of broiler chicken and piglets. Arch Tierernahr 54:1–17

    CAS  Article  Google Scholar 

  43. Jung JH, Lee MY, Chang HC (2012) Evaluation of the probiotic potential of Bacillus polyfermenticus CJ6 isolated from Meju, a Korean soybean fermentation starter. J Microbiol Biotechn 22:1510–1517

    CAS  Article  Google Scholar 

  44. Karlovsky P (2011) Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Appl Microbiol Biotechnol 91:491–504

    CAS  Article  Google Scholar 

  45. Krawczyk AO, de Jong A, Omony J, Holsappel S, Wells-Bennik MH, Kuipers OP, Eijlander RT (2017). Spore heat-activation requirements and germination responses correlate with sequences of germinant receptors and with the presence of a specific spoVA2mob operon in food-borne strains of Bacillus subtilis. Appl Environ Microbiol 27. pii: AEM.03122-16

  46. Latorre JD, Hernandez-Velasco X, Kallapura G, Menconi A, Pumford NR, Morgan MJ, Layton SL, Bielke LR, Hargis BM, Téllez G (2014) Evaluation of germination, distribution, and persistence of Bacillus subtilis spores through the gastrointestinal tract of chickens. Poult Sci 93:1793–1800

    CAS  Article  Google Scholar 

  47. Lee KW, Lillehoj HS, Jang SI, Li G, Lee SH, Lillehoj EP, Siragusa GR (2010) Effect of Bacillus-based direct-fed microbials on Eimeria maxima infection in broiler chickens. Comp Immunol Microb 33:e105–e110

    Article  Google Scholar 

  48. Lee KW, Lillehoj HS, Jang SI, Lee SH (2014) Effects of salinomycin and Bacillus subtilis on growth performance and immune responses in broiler chickens. Res Vet Sci 97:304–308

    CAS  Article  Google Scholar 

  49. Leser TD, Knarreborg A, Worm J (2008) Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. J Appl Microbiol 104:1025–1033

    CAS  Article  Google Scholar 

  50. Li XZ, Zhu C, Lange CFM, Zhou T, He J, Yu H, Gong J, Young JC (2011) Efficacy of detoxification of deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of themycotoxin on swine growth performance. Food Addit Contam 28:894–901

    CAS  Article  Google Scholar 

  51. Liang J, Fu J, Kang H, Lin J, Yu Q, Yang Q (2013) The stimulatory effect of TLRs ligands on maturation of chicken bone marrow-derived dendritic cells. Vet Immunol Immunopathol 155:205–210

    CAS  Article  Google Scholar 

  52. Maathuis AJ, Keller D, Farmer S (2010) Survival and metabolic activity of the GanedenBC30 strain of Bacillus coagulans in a dynamic in vitro model of the stomach and small intestine. Benef Microbes 1:31–36

    CAS  Article  Google Scholar 

  53. Mitropoulou G, Nedovic V, Goyal A, Kourkoutas Y (2013) Immobilization technologies in probiotic food production. J Nutr Metab 2013:716861

    Article  Google Scholar 

  54. Mondol MA, Shin HJ, Islam MT (2013) Diversity of secondary metabolites from marine Bacillus species: chemistry and biological activity. Mar Drugs 11:2846–28472

    Article  Google Scholar 

  55. Moriwaki H, Koide R, Yoshikawa R, Warabino Y, Yamamoto H (2013) Adsorption of rare earth ions onto the cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis. Appl Microbiol Biotechnol 97:3721–3728

    CAS  Article  Google Scholar 

  56. Narula J, Fujita M, Igoshin OA (2016) Functional requirements of cellular differentiation: lessons from Bacillus subtilis. Curr Opin Microbiol 34:38–46

    CAS  Article  Google Scholar 

  57. Nguyen HT, Truong DH, Kouhoundé S, Ly S, Razafindralambo H, Delvigne F (2016) Biochemical engineering approaches for increasing viability and functionality of probiotic bacteria. Int J Mol Sci 17: pii: E867

  58. Opara EC (2017) Applications of cell microencapsulation. Methods Mol Biol 1479:23–39

    Article  Google Scholar 

  59. Ozawa K, Yokota H, Kimura M, Mitsuoka T (1981) Effects of administration of Bacillus subtilis strain BN on intestinal flora of weanling piglets. Nihon Juigaku Zasshi 43:771–775

    CAS  Article  Google Scholar 

  60. Pedraza-Reyes M, Ramírez-Ramírez N, Vidales-Rodríguez LE, Robleto EA (2012) Chapter 6: mechanisms of bacterial spore survival. In: Abel-Santos E (ed) Bacterial spores: current research and applications. Caister Academic Press, Norfolk, p 282

    Google Scholar 

  61. Permpoonpattana P, Hong HA, Khaneja R, Cutting SM (2012) Evaluation of Bacillus subtilis strains as probiotics and their potential as a food ingredient. Benef Microbes 3:127–135

    CAS  Article  Google Scholar 

  62. Petchkongkaew A, Taillandier P, Gasaluck P, Lebrihi A (2008) Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao): screening for aflatoxin B-1 and ochratoxin A detoxification. J Appl Microbiol 104:1495–1502

    CAS  Article  Google Scholar 

  63. Piggot PJ, Coote JG (1976) Genetic aspects of bacterial endospore formation. Bacteriol Rev 40:908–962

    CAS  Google Scholar 

  64. Piggot PJ, Hilbert DW (2004) Sporulation of Bacillus subtilis. Curr Opin Microbiol 7:579–586

    CAS  Article  Google Scholar 

  65. Riaz QU, Masud T (2013) Recent trends and applications of encapsulating materials for probiotic stability. Crit Rev Food Sci Nutr 53:231-44 Rhee KJ, Sethupathi P, Driks A, Lanning DK, Knight KL (2004) Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J Immunol 172:1118–1124

    Google Scholar 

  66. Sánchez B, Arias S, Chaignepain S, Denayrolles M, Schmitter JM, Bressollier P, Urdaci MC (2009) Identification of surface proteins involved in the adhesion of a probiotic Bacillus cereus strain to mucin and fibronectin. Microbiology 155:1708–1716

    Article  Google Scholar 

  67. Sansinenea E, Ortiz A (2011) Secondary metabolites of soil Bacillus spp. Biotechnol Lett 33:1523–1538

    CAS  Article  Google Scholar 

  68. Santoso U, Tanaka K, Ohtania S (2001) Effect of fermented product from Bacillus subtilis on feed efficiency, lipid accumulation and ammonia production in broiler chicks. Asian Aust J Anim Sci 14:333–337

    CAS  Article  Google Scholar 

  69. Schaeffer P, Millet J, Aubert JP (1965) Catabolic repression of bacterial sporulation. Proc Natl Acad Sci USA 54:704–711

    CAS  Article  Google Scholar 

  70. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17

    CAS  Article  Google Scholar 

  71. Scharek-Tedin L, Pieper R, Vahjen W, Tedin K, Neumann K, Zentek J (2013) Bacillus cereus var. Toyoi modulates the immune reaction and reduces the occurrence of diarrhea in piglets challenged with Salmonella Typhimurium DT104. J Anim Sci 91:5696–5704

    CAS  Article  Google Scholar 

  72. Schierack P, Wieler LH, Taras D, Herwig V, Tachu B, Hlinak A, Schmidt MF, Scharek L (2007) Bacillus cereus var. toyoi enhanced systemic immune response in piglets. Vet Immunol Immunopathol 118:1–11

    CAS  Article  Google Scholar 

  73. Setlow P (2003) Spore germination. Curr Opin Microbiol 6:550–556

    CAS  Article  Google Scholar 

  74. Setlow P (2014) Germination of spores of Bacillus species: what we know and do not know. J Bacteriol 196:1297–1305

    Article  Google Scholar 

  75. Sirec T, Cangiano G, Baccigalupi L, Ricca E, Isticato R (2014) The spore surface of intestinal isolates of Bacillus subtilis. FEMS Microbiol Lett 358:194–201

    CAS  Article  Google Scholar 

  76. Song M, Hong HA, Huang JM, Colenutt C, Khang DD, Nguyen TV, Park SM, Shim BS, Song HH, Cheon IS, Jang JE, Choi JA, Choi YK, Stadler K, Cutting SM (2012) Killed Bacillus subtilis spores as a mucosal adjuvant for an H5N1 vaccine. Vaccine 30:3266–3277

    Article  Google Scholar 

  77. Spinosa MR, Braccini T, Ricca E, De Felice M, Morelli L, Pozzi G, Oggioni MR (2000) On the fate of ingested Bacillus spores. Res Microbiol 151:361–368

    CAS  Article  Google Scholar 

  78. Swick MC, Koehler TM, Driks A (2016) Surviving between hosts: sporulation and transmission. Microbiol Spectr. doi:10.1128/microbiolspec

    Google Scholar 

  79. Tam NK, Uyen NQ, Hong HA, Duc le H, Hoa TT, Serra CR, Henriques AO, Cutting SM (2006) The intestinal life cycle of Bacillus subtilis and close relatives. J Bacteriol 188:2692–2700

    CAS  Article  Google Scholar 

  80. Tinyiro SE, Wokadala C, Xu D, Yao W (2011) Adsorption and degradation of zearalenone by Bacillus strains. Folia Microbiol (Praha) 56:321–327

    CAS  Article  Google Scholar 

  81. Uyen NQ, Hong HA, Cutting SM (2007) Enhanced immunisation and expression strategies using bacterial spores as heat-stable vaccine delivery vehicles. Vaccine 25:356–365

    CAS  Article  Google Scholar 

  82. Wang H, Wang Y, Yang R (2017) Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future. Appl Microbiol Biotechnol 101:933–949

    CAS  Article  Google Scholar 

  83. Warda AK, den Besten HMW, Sha N, Abee T, Nierop Groot MN (2015) Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores. Int J Food Microbiol 201:27–34

    CAS  Article  Google Scholar 

  84. Wells-Bennik MH, Eijlander RT, den Besten HM, Berendsen EM, Warda AK, Krawczyk AO, Nierop Groot MN, Xiao Y, Zwietering MH, Kuipers OP, Abee T (2016) Bacterial spores in food: survival, emergence, and outgrowth. Annu Rev Food Sci Technol 7:457–482

    CAS  Article  Google Scholar 

  85. Wilcks A, Smidt L, Bahl MI, Hansen BM, Andrup L, Hendriksen NB, Licht TR (2008) Germination and conjugation of Bacillus thuringiensis subsp. israelensis in the intestine of gnotobiotic rats. J Appl Microbiol 104:1252–1259

    CAS  Article  Google Scholar 

  86. Zhang L, Peng Y, Wu S, Sun L, Huang E, Huang T, Xu L, Wu C, Gelbič I, Guan X (2012) Microbial ecology and association of Bacillus thuringiensis in chicken feces originating from feed. Curr Microbiol 65:784–791

    CAS  Article  Google Scholar 

  87. Ziaei-Nejad S, Habibi Rezaei M, Azari Takami G, Lovett DL, Mirvaghefi AR, Shakouri M (2006) The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture 252:516–524

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to Kirsty Gibbs and Laura Payling from DuPont Industrial Biosciences for review and comments on the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to M. Bernardeau or P. Nurminen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bernardeau, M., Lehtinen, M.J., Forssten, S.D. et al. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J Food Sci Technol 54, 2570–2584 (2017). https://doi.org/10.1007/s13197-017-2688-3

Download citation

Keywords

  • Bacillus
  • Spore
  • Vegetative cells
  • Germination
  • Probiotic
  • Gastrointestinal tract