Application of electrolysed oxidising water as a sanitiser to extend the shelf-life of seafood products: a review

Abstract

Electrolysed oxidising water (E.O. water) is produced by electrolysis of sodium chloride to yield primarily chlorine based oxidising products. At neutral pH this results in hypochlorous acid in the un-protonated form which has the greatest oxidising potential and ability to penetrate microbial cell walls to disrupt the cell membranes. E.O. water has been shown to be an effective method to reduce microbial contamination on food processing surfaces. The efficacy of E.O. water against pathogenic bacteria such as Listeria monocytogenes, Escherichia coli and Vibrio parahaemolyticus has also been extensively confirmed in growth studies of bacteria in culture where the sanitising agent can have direct contact with the bacteria. However it can only lower, but not eliminate, bacteria on processed seafoods. More research is required to understand and optimise the impacts of E.O. pre-treatment sanitation processes on subsequent microbial growth, shelf life, sensory and safety outcomes for packaged seafood products.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Al-Haq MI, Sugiyama J, Isobe S (2005) Applications of electrolyzed water in agriculture & food industries. Food Sci Technol Res 11:135–150

    Article  Google Scholar 

  2. Al-Holy MA, Rasco BA (2015) The bactericidal activity of acidic electrolyzed oxidizing water against Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on raw fish, chicken and beef surfaces. J Food Control 54:317–321

    CAS  Article  Google Scholar 

  3. ANZFA (2001) Safe food Australia, 2nd edn. Australia New Zealand Food Authority, Canberra

    Google Scholar 

  4. Ayebah B, Hung Y-C (2005) Electrolysed water and its corrosiveness on various surface materials commonly found in food processing facilities. J Food Process Eng 28:247–264

    Article  Google Scholar 

  5. Botanical Food Company Pty Ltd (2014) Petition for the annotation of chlorine materials as per 7 CFR 205. 600-606 to include hypochlorous acid as produced byy the electrochemical activation of sodium chloride and water. The Organic Insider QLD, Australia

  6. Cahill MM (1990) Bacterial flora of fishes: a review. Microb Ecol 19:21–41

    CAS  Article  Google Scholar 

  7. Cao W, Zhu ZW, Shi ZX, Wang CY, Li BM (2009) Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs. Int J Food Microbiol 130:88–93. doi:10.1016/j.ijfoodmicro.2008.12.021

    CAS  Article  Google Scholar 

  8. Chaillou S et al (2015) Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. ISME J 9:1105–1118. doi:10.1038/ismej.2014.202

    Article  Google Scholar 

  9. Codex Alimentarius Commission (2000) Discussion paper on the use of chlorinated water. Joint FAO/WHO Food Standard Program

  10. Colangelo MA, Caruso MC, Favati F, Scarpa T, Condelli N, Galgano F (2015) The sustainability of agro-food and natural resource systems in the mediterranean basin. Electrolysed water in the food industry as supporting of environmental sustainability. Springer, Switzerland. doi:10.1007/978-3-319-16357-4_25

    Google Scholar 

  11. Dalgaard P, Gram L, Huss HH (1993) Spoilage and shelf-life of cod fillet packed in vacuum or modified atmospheres. Int J Food Microbiol 19:283–294. doi:10.1016/0168-1605(93)90020-H

    CAS  Article  Google Scholar 

  12. Deborde M, von Gunten U (2008) Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: a critical review. Water Res 42:13–51. doi:10.1016/j.watres.2007.07.025

    CAS  Article  Google Scholar 

  13. Dickerson M (2009) Simple elixir called a “miracle liquid”. Los Angeles Times, Los Angeles

    Google Scholar 

  14. Eifert JD, Sanglay GC (2002) Chemistry of chlorine sanitizers in food processing. Dairy Food Environ Sanitat 22:534–538

    Google Scholar 

  15. Emborg J, Laursen BG, Rathjen T, Dalgaard P (2002) Microbial spoilage and formation of biogenic amines in fresh and thawed modified atmosphere-packed salmon (Salmo salar) at 2 °C. J Appl Microbiol 92:790–799. doi:10.1046/j.1365-2672.2002.01588.x

    CAS  Article  Google Scholar 

  16. Emswiler BS, Kotula AW, Rough DK (1976) Bactertericidal effectiveness of three chlorine sources used in beef carcass washing. J Anim Sci 42:1445–1450. doi:10.2527/jas1976.4261445x

    CAS  Google Scholar 

  17. FAO (2008) Benefits and risk of the use of chlorine-containing disinfectants in food production and food processing. FAO, Ann Arbor

    Google Scholar 

  18. Feliciano L, Lee J, Lopes JA, Pascall MA (2010) Efficacy of sanitized ice in reducing bacterial load on fish fillet and in the water collected from the melted ice. J Food Microbiol Saf 75:M231–M238. doi:10.1111/j.1750-3841.2010.01583.x

    CAS  Google Scholar 

  19. Fukuzaki S (2006) Mechanisms of action of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci 11:147–157

    CAS  Article  Google Scholar 

  20. Gomez-Lopez VM, MaI Gil, Pupunat L, Allende A (2015) Cross-contamination of Escherichia coli O157:H7 is inhibited by electrolyzed water combined with salt under dynamic conditions of increasing organic matter. Food Microbiol 46:471–478. doi:10.1016/j.fm.2014.08.024

    CAS  Article  Google Scholar 

  21. Gómez-López VM, Marín A, Medina-Martínez MS, Gil MI, Allende A (2013) Generation of trihalomethanes with chlorine-based sanitizers and impact on microbial, nutritional and sensory quality of baby spinach. Postharvest Biol Technol 85:210–217. doi:10.1016/j.postharvbio.2013.05.012

    Article  Google Scholar 

  22. Gram L, Huss HH (1996) Microbiological spoilage of fish and fish products. Int J Food Microbiol 33:121–137. doi:10.1016/0168-1605(96)01134-8

    CAS  Article  Google Scholar 

  23. Hsu S-Y (2005) Effects of flow rate, temperature and salt concentration on chemical and physical properties of electrolyzed oxidizing water. J Food Eng 66:171–176. doi:10.1016/j.jfoodeng.2004.03.003

    Article  Google Scholar 

  24. Hu Y, Du S, Wu DM, Luo HY (2015) Study on the antimicrobial activity of strongly acidic electrolysed oxidising water for large yellow croaker. Qual Assur Saf Crops Foods 7:133–139. doi:10.3920/QAS2012.0205133

    Article  Google Scholar 

  25. Huang Y-R, Hsieh H-S, Lin S-Y, Lin S-J, Hung Y-C, Hwang D-F (2006a) Application of electrolyzed oxidizing water on the reduction of bacterial contamination for seafood. Food Control 17:987–993. doi:10.1016/j.foodcont.2005.07.003

    CAS  Article  Google Scholar 

  26. Huang Y-R, Shiau C-Y, Hung Y-C, Hwang D-F (2006b) Change of hygienic quality and freshness in tuna treated with electrolyzed water and carbon monoxide gas during refrigerated and frozen storage. J Food Microbiol Saf 71:M127–M133. doi:10.1111/j.1750-3841.2006.00023.x

    CAS  Google Scholar 

  27. Huang Y-R, Hung Y-C, Hsu S-Y, Huang Y-W, Hwang D-F (2008) Application of electrolyzed water in the food industry. Food Control 19:329–345. doi:10.1016/j.foodcont.2007.08.012

    Article  Google Scholar 

  28. Issa-Zacharia A, Kamitani Y, Muhimbula HS, Ndabikunze BK (2010) A review of microbiological safety of fruits and vegetables and the introduction of electrolysed water as an alternative to sodium hypochlorite solution. Afr J Food Sci 4:778–789

    Google Scholar 

  29. Jay JM, Loessner MJ, Golden DA (2005) Modern food microbiology, chapter 13, 7th edn. Springer, New York

    Google Scholar 

  30. Kim C, Hung Y-C (2012) Inactivation of E. coli O157:H7 on blueberries by electrolyzed water, ultraviolet light, and ozone. J Food Sci 77:M206–M211. doi:10.1111/j.1750-3841.2011.02595.x

    CAS  Article  Google Scholar 

  31. Kim C, Hung Y-C, Brackett RE (2000) Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens. Int J Food Microbiol 61:199–207. doi:10.1016/S0168-1605(00)00405-0

    CAS  Article  Google Scholar 

  32. Kim C, Hung Y-C, Brackett RE, Frank JF (2001) Inactivation of Listeria monocytogenes biofilm by electrolysed oxidizing water. J Food Process Preserv 25:91–100. doi:10.1111/j.1745-4549.2001.tb00446.x

    Article  Google Scholar 

  33. Kim W-T, Lim Y-S, Shin I-S, Park H, Chung D, Suzuki T (2006) Use of electrolyzed water ice for preserving freshness of pacific saury (Cololabis saira). J Food Prot 69:2199–2204

    Article  Google Scholar 

  34. Langsrud S, Moen B, Møretrø T, Løype M, Heir E (2015) Microbial dynamics in mixed culture biofilms of bacteria surviving sanitation of conveyor belts in salmon-processing plants. J Appl Microbiol 120:366–378. doi:10.1111/jam.13013

    Article  Google Scholar 

  35. Len S-V, Hung Y-C, Chung D, Anderson JL, Erickson MC, Morita K (2002) Effects of strorage condition and pH on chlorine loss in electrolysed oxidizing (EO) water. J Agric Food Chem 50:209–212. doi:10.1021/jf010822v

    CAS  Article  Google Scholar 

  36. Liao LB, Chen WM, Xiao XM (2007) The generation and inactivation mechanism of oxidation–reduction potential of electrolyzed oxidizing water. J Food Eng 78:1326–1332. doi:10.1016/j.jfoodeng.2006.01.004

    CAS  Article  Google Scholar 

  37. Lin T, Wang JJ, Li JB, Liao C, Pan YJ, Zhao Y (2013) Use of acidic electrolyzed water ice for preserving the quality of shrimp. J Agric Food Chem 61:8695–8702

    CAS  Article  Google Scholar 

  38. Liu C, Duan J, Su Y-C (2006) Effects of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing surfaces. Int J Food Microbiol 106:248–253. doi:10.1016/j.ijfoodmicro.2005.06.020

    CAS  Article  Google Scholar 

  39. Mahmoud BSM, Kawai Y, Yamazaki K, Miyashita K, Suzuki T (2007) Effect of treatment with electrolyzed NaCl solutions and essential oil compounds on the proximate composition, amino acid and fatty acid composition of carp fillets. Food Chem 101:1492–1498. doi:10.1016/j.foodchem.2006.03.057

    CAS  Article  Google Scholar 

  40. McCarthy S, Burkhardt-III W (2012) Efficacy of electrolyzed oxidizing water against Listeria monocytogenes and Morganella morganii on conveyor belt and raw fish surfaces. Food Control 24:214–219. doi:10.1016/j.foodcont.2011.09.030

    CAS  Article  Google Scholar 

  41. McPherson LL (1993) Understanding ORP’s role in the disinfection process. Water Eng Manag 140:29–31

    Google Scholar 

  42. Milne D, Powell SM (2014) Limited microbial growth in Atlantic salmon packed in a modified atmosphere. Food Control 42:29–33. doi:10.1016/j.foodcont.2014.01.035

    CAS  Article  Google Scholar 

  43. Møretrø T, Moen B, Heir E, Hansen AA, Langsrud S (2016) Contamination of salmon fillets and processing plants with spoilage bacteria. Int J Food Microbiol 273:96–108. doi:10.1016/j.ijfoodmicro.2016.08.016

    Google Scholar 

  44. Novotny L, Dvorska L, Lorencova L, Beran V, Pavlik I (2004) Fish: a potential source of bacterial pathogens for human beings. Vet Med Czech 49:343–358

    Google Scholar 

  45. Ovissipour M, Al-Qadiri HM, Sablani SS, Govindan BN, Al-Alami N, Rasco B (2015) Efficacy of acidic and alkaline electrolyzed water for inactivating Escherichia coli O104:H4, Listeria monocytogenes, Campylobacter jejuni, Aeromonas hydrophila, and Vibrio parahaemolyticus in cell suspensions. Food Control 17:117–123. doi:10.1016/j.foodcont.2015.01.006

    Article  Google Scholar 

  46. Ozer NP, Demirci A (2006) Electrolyzed oxidizing water treatment for decontamination of raw salmon inoculated with Escherichia coli O157:H7 and Listeria monocytogenes Scott A and response surface modeling. J Food Eng 72:234–241. doi:10.1016/j.jfoodeng.2004.11.038

    Article  Google Scholar 

  47. Park CM, Hung YC, Doyle MP, Ezeike GOI, Kim C (2001) Pathogen reduction and quality of lettuce treated with electrolyzed oxidizing and acidified chlorinated water. Food Microbiol Saf 66:1368–1372. doi:10.1111/j.1365-2621.2001.tb15216.x

    CAS  Google Scholar 

  48. Park H, Hung Y-C, Kim C (2002) Effectiveness of electrolyzed water as a sanitizer for treating different surfaces. J Food Prot 8:1276–1280

    Article  Google Scholar 

  49. Phuvasate S, Su Y-C (2010) Effects of electrolyzed oxidizing water and ice treatments on reducing histamine-producing bacteria on fish skin and food contact surface. Food Control 21:286–291. doi:10.1016/j.foodcont.2009.06.007

    CAS  Article  Google Scholar 

  50. Pinto L, Ippolito A, Baruzzi F (2015) Control of spoiler Pseudomonas spp. on fresh cut vegetables by neutral electrolyzed water. Food Microbiol 50:102–108. doi:10.1016/j.fm.2015.04.003

    CAS  Article  Google Scholar 

  51. Powell SM, Tamplin ML (2012) Microbial communities on Australian modified atmosphere packaged Atlantic salmon. Food Microbiol 30:226–232. doi:10.1016/j.fm.2011.10.002

    CAS  Article  Google Scholar 

  52. Powitz RW (2010) Activated and electrolysed water: a brief review of a new generation of cleaners and sanitizing agents, CA, USA

  53. Prendergast DM, Daly DJ, Sheridan JJ, McDowel DA, Blair IS (2004) The effect of abattoir design on aerial contamination levels and the relationship between aerial and carcass contamination levels in two Irish beef abattoirs. Food Microbiol 21:589–596. doi:10.1016/j.fm.2003.11.002

    Article  Google Scholar 

  54. Rahman SME, Ding T, Oh D-H (2010) Effectiveness of low concentration electrolyzed water to inactivate foodborne pathogens under different environmental conditions. Int J Food Microbiol 139:147–153. doi:10.1016/j.ijfoodmicro.2010.03.020

    CAS  Article  Google Scholar 

  55. Rahman SME, Khan I, Oh D-H (2016) Electrolysed water as a novel sanitizer in the food industry: current trends and future perspective. Compr Rev Food Sci Food Saf 00:1–20. doi:10.1111/1541-4337.12200

    Google Scholar 

  56. Rajeshwar K, Ibanez JG (1997) Environmental electrochemistry: fundamentals and applications in pollution sensors and abatement. Academic Press Inc, San Diego

    Google Scholar 

  57. Ray B, Bhunia A (2008) Fundamental food microbiology, 4th edn. CRC Press, New York

    Google Scholar 

  58. Rook JJ (1979) Possible pathways for the formation of chlorinated degradation products during chlorination of humic acids and resorcinol. Water Chlor Environ Impact Health Eff 3:85–98

    Google Scholar 

  59. Shiroodi SG, Ovissipour M, Ross CF, Rasco BA (2016) Efficacy of electrolyzed oxidizing water as a pretreatment method for reducing Listeria monocytogenes contamination in cold-smoked Atlantic salmon (Salmo salar). Food Control 60:401–407. doi:10.1016/j.foodcont.2015.08.020

    Article  Google Scholar 

  60. Sivertsvik M, Jeksrud WK, Rosnes T (2002) A review of modified atmosphere packaging of fish and fishery products—significance of microbial growth, activities and safety. Int Food Sci Technol 37:107–127. doi:10.1046/j.1365-2621.2002.00548.x

    CAS  Article  Google Scholar 

  61. Venkitanarayanan KS, Ezeike GO, Hung Y-C, Doyle MP (1999) Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on plastic kitchen cutting boards by electrolyzed oxidizing water. J Food Prot 8:857–860

    Article  Google Scholar 

  62. Walker SP, Dimirci A, Graves RE, Spencer SB, Roberts RF (2005) Response surface modelling for cleaning and disinfecting materials used in milking system with electrolysed oxidising water. Int J Dairy Technol 58:65–73. doi:10.1111/j.1471-0307.2005.00190.x

    CAS  Article  Google Scholar 

  63. Wang JJ, Lina T, Lia JB, Liaoa C, Pana YJ, Zhao Y (2014) Effect of acidic electrolyzed water ice on quality of shrimp in dark condition. Food Control 35:207–212. doi:10.1016/j.foodcont.2013.07.005

    Article  Google Scholar 

  64. Wang M, Wang JJ, Sun XH, Pan YJ, Zhao Y (2015) Preliminary mechanism of acidic electrolyzed water ice on improving the quality and safety of shrimp. Food Chem 176:333–341. doi:10.1016/j.foodchem.2014.12.089

    CAS  Article  Google Scholar 

  65. Waters BW, Hung YC (2014) The effect of organic loads on stability of various chlorine-based sanitisers. Int J Food Sci Technol 49:867–875. doi:10.1111/ijfs.12379

    CAS  Article  Google Scholar 

  66. Wholey W-YC (2012) Hypochlorous acid stress responses in bacteria. The University of Michigan, Michigan, USA

    Google Scholar 

  67. Xie J, Sun X, Pan Y, Zhao Y (2012) Combining basic electrolyzed water pretreatment and mild heat greatly enhanced the efficacy of acidic electrolyzed water against Vibrio parahaemolyticus on shrimp. Food Control 23:320–324. doi:10.1016/j.foodcont.2011.07.019

    CAS  Article  Google Scholar 

  68. Yu C-H, Huang T-C, Chung C-C, Huang H-H, Chen H-H (2014) Application of highly purified electrolyzed chlorine dioxide for tilapia fillet disinfection. Sci World J. doi:10.1155/2014/619038

    Google Scholar 

  69. Zhang B, Ma L, Deng S, Xie C, Qiu X (2015) Shelf-life of pacific white shrimp (Litopenaeus vannamei) as affected by weakly acidic electrolyzed water ice-glazing and modified atmosphere packaging. Food Control 51:114–121. doi:10.1016/j.foodcont.2014.11.016

    CAS  Article  Google Scholar 

  70. Zhou R, Liu Y, Xie J, Wang X (2011) Effects of combined treatment of electrolysed water and chitosan on the quality attributes and myofibril degradation in farmed obscure puffer fish (Takifugu obscurus) during refrigerated storage. Food Chem 129:1660–1666. doi:10.1016/j.foodchem.2011.06.028

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fera R. Dewi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dewi, F.R., Stanley, R., Powell, S.M. et al. Application of electrolysed oxidising water as a sanitiser to extend the shelf-life of seafood products: a review. J Food Sci Technol 54, 1321–1332 (2017). https://doi.org/10.1007/s13197-017-2577-9

Download citation

Keywords

  • Electrolysed oxidising water
  • Shelf-life
  • Seafood products