Skip to main content
Log in

Enrichment of maize and triticale bran with recombinant Aspergillus tubingensis ferulic acid esterase

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Ferulic acid is a natural antioxidant found in various plants and serves as a precursor for various fine chemicals, including the flavouring agent vanillin. However, expensive extraction methods have limited the commercial application of ferulic acid, in particular for the enrichment of food substrates. A recombinant Aspergillus tubingensis ferulic acid esterase Type A (FAEA) was expressed in Aspergillus niger D15#26 and purified with anion-exchange chromatography (3487 U/mg, K m  = 0.43 mM, K cat = 0.48/min on methyl ferulate). The 36-kDa AtFAEA protein showed maximum ferulic acid esterase activity at 50 °C and pH 6, suggesting potential application in industrial processes. A crude AtFAEA preparation extracted 26.56 and 8.86 mg/g ferulic acid from maize bran and triticale bran, respectively, and also significantly increased the levels of p-coumaric and caffeic acid from triticale bran. The cost-effective production of AtFAEA could therefore allow for the enrichment of brans generally used as food and fodder, or for the production of fine chemicals (such as ferulic and p-coumaric acid) from plant substrates. The potential for larger-scale production of AtFAEA was demonstrated with the A. niger D15[AtfaeA] strain yielding a higher enzyme activity (185.14 vs. 83.48 U/ml) and volumetric productivity (3.86 vs. 1.74 U/ml/h) in fed-batch than batch fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Benoit I, Navarro D, Marnet N, Rakotomanomana N, Lesage-Meessen L, Sigoillot JC, Asther M (2006) Feruloyl esterase as a tool for the release of phenolic compounds from agro-industrial by-products. Carbohydr Res 341:1820–1827

    Article  CAS  Google Scholar 

  • Benoit I, Danchin EGJ, Bleichrodt RJ, de Vries RP (2008) Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity. Biotechnol Lett 30:387–396

    Article  CAS  Google Scholar 

  • De Vries RP, Michelser B, Poulsen CH, Kroon PA, van den Heuvel RH, Faulds CB, Williamson G, van den Hombergh JP, Visser J (1997) The faeA genes from Aspergillus niger and Aspergillus tubingensis encodes ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl Environ Microbiol 63:4638–4644

    Google Scholar 

  • De Vries RP, Kester HCM, van Kuyk PA (2002) The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation, and is specifically induced on aromatic compounds. Biochem J 363:377–386

    Article  Google Scholar 

  • Debeire P, Khoune P, Jeltsch J-M, Phalip V (2012) Product patterns of a feruloyl esterase from Aspergillus nidulans on large feruloyl-arabino-xylo-oligosaccharides from wheat bran. Bioresour Technol 119:425–428

    Article  CAS  Google Scholar 

  • Faulds CB, Williamson G (1993) Ferulic acid esterase from Aspergillus niger: purification and partial characterisation of two forms from a commercial source of pectinase. Biotechnol Appl Biochem 17:349–359

    CAS  Google Scholar 

  • Faulds CB, de Vries R, Visser J, Williamson G (1998) Stability of feruloyl esterases from Aspergillus. Biochem Soc T 26:S165

    Article  CAS  Google Scholar 

  • Fazary AE, Ju YH (2007) Feruloyl esterase as biotechnological tools: current and future perspective. Acta Biochim Biophys Sin 39:811–828

    Article  CAS  Google Scholar 

  • Fazary AE, Ju YH (2008) The large-scale use of feruloyl esterases in industry. Biotechnol Mol Biol Rev 3:095–110

    Google Scholar 

  • Gong YY, Yin X, Zhang HM, Wu MC, Tang CD, Wang JQ, Pang QF (2013) Cloning, expression of a feruloyl esterase from Aspergillus usamii E001 and its applicability in generating ferulic acid from wheat bran. J Ind Microbiol Biotechnol 40:1433–1441

    Article  CAS  Google Scholar 

  • Graf E (1992) Antioxidant potential of ferulic acid. Free Radical Biol Med 13:435–448

    Article  CAS  Google Scholar 

  • Hedge S, Srinivas P, Muralikrishna G (2009) Single-step synthesis of 4-nitrophenyl ferulate for spectrophotometric assay of feruloylesterase. Anal Biochem 387:128–129

    Article  Google Scholar 

  • Heinonen M, Rein D, Satue-Gracia MT, Huang SW, German JB, Frankel EN (1998) Effect of protein on the antioxidant activity of phenolic compounds in a lecithin-liposome oxidation system. J Agr Food Chem 46:917–922

    Article  CAS  Google Scholar 

  • Hosseinian FS, Mazza G (2009) Triticale bran and straw: potential new sources of phenolic acids, proanthocyanidins, and lignans. J Funct Foods 1:57–64

    Article  CAS  Google Scholar 

  • Kanauchi M, Watanabe S, Tsukada T, Atta K, Kakuta T, Koizumi T (2008) Purification and characterisation of ferulyol esterase from Aspergillus awamori G-2 strain. J Food Sci 73:458–463

    Article  Google Scholar 

  • Kim M, Hyun J, Kim J, Park J, Kim M, Kim J, Lee S, Chun S, Chung F (2007) Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J Agr Food Chem 55:4802–4809

    Article  CAS  Google Scholar 

  • Koseki T, Takahashi K, Fushinobu S, Iefuji H, Iwano K, Hashizume K, Matsuzawa H (2005) Mutational analysis of a feruloyl esterase from Aspergillus awamori involved in substrate discrimination and pH dependence. Biochim Biophys Acta 1722:200–208

    Article  CAS  Google Scholar 

  • Koseki T, Takahashi K, Handa T, Yamane Y, Fushinobu S, Hashizume K (2006) N-Linked oligosaccharides of Aspergillus awamori feruloyl esterase are important for thermostability and catalysis. Biosci Biotechnol Biochem 70:2476–2480

    Article  CAS  Google Scholar 

  • Koseki T, Fushinobu S, Ardiansyah SH, Komai M (2009) Occurrence, properties, and applications of feruloyl esterases. Appl Microbiol Biotechnol 84:803–810

    Article  CAS  Google Scholar 

  • Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4:86–93

    Article  CAS  Google Scholar 

  • Lapierre C, Pollet B, Ralet M, Saulnier L (2001) The phenolic fraction of maize bran: evidence for lignin-heteroxylan association. Phytochemistry 57:765–772

    Article  CAS  Google Scholar 

  • Mathew S, Abraham TE (2004) Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit Rev Biotechnol 24:59–83

    Article  CAS  Google Scholar 

  • Poidevin L, Levasseur A, Pae G, Navarro D, Heiss-Blanquet S, Asther M, Record E (2009) Heterologous production of the Piromyces equi cinnamoyl esterase in Trichoderma reesei for biotechnological applications. Lett Appl Microbiol 49:673–678

    Article  CAS  Google Scholar 

  • Priefert H, Rabenhorst J, Steinbuchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314

    Article  CAS  Google Scholar 

  • Rose SH, van Zyl WH (2002) Constitutive expression of the Trichoderma reesei β-1,4-xylanase gene (xyn2) and the β-1,4-endoglucanase gene (egI) in Aspergillus niger in molasses and defined glucose media. Appl Microbiol Biotechnol 58:461–468

    Article  CAS  Google Scholar 

  • Rose SH, van Zyl WH (2008) Exploitation of Aspergillus niger for the heterologous production of cellulases and hemicelluloses. Open Biotechnol J 2:165–175

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Shin H, Chen RR (2006) Production and characterisation of a type B feruloyl esterase from Fusarium proliferatum NRRL 26517. Enzyme Microb Technol 38:478–485

    Article  CAS  Google Scholar 

  • Sundberg M, Poutanen K, Markkanen P, Linko M (1990) An extracellular esterase of Aspergillus awamori. Biotechnol Appl Biochem 12:670–680

    CAS  Google Scholar 

  • Yu P, McKinnon JJ, Christensen DA (2005) Improving the nutritional value of oat hulls for ruminant animals with pretreatment of a multi-enzyme cocktail: in vitro studies. J Anim Sci 83:1133–1141

    Article  CAS  Google Scholar 

  • Zhao Z, Moghadasian MH (2008) Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem 109:691–702

    Article  CAS  Google Scholar 

  • Zhao S, Yao S, Ou S, Line J, Wang Y, Peng X, Li A, Yu B (2014) Preparation of ferulic acid from corn bran: its improved extraction and purification by membrane separation. Food Bioprod Process 92:309–313

    Article  CAS  Google Scholar 

  • Zwane EN, Rose SH, van Zyl WH, Rumbold K, Viljoen-Bloom M (2014) Over-expression of Aspergillus tubingensis faeA in protease-deficient Aspergillus niger enables ferulic acid production from plant material. J Ind Microbiol Biotechnol 41:1027–1034

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is based on the research supported in part by the National Research Foundation of South Africa (Grant 76597 to MVB and Grant 86423 to WHvZ). Prof Peter Punt, TNO Microbiology and Systems Biology, Netherlands, kindly provided the Aspergillus niger D15#26 host strain.

Author’s contribution

ENZ was the principal researcher responsible for experimental planning, execution, data collection and analyses, as well as drafting the manuscript. PJvZ assisted with the fermentation protocol; KGD with bran treatments and chemical analyses; SHR and KR with enzyme characterisation. WHvZ provided intellectual input together with MVB who prepared the final manuscript with all authors participating in the final editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinda Viljoen-Bloom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zwane, E.N., van Zyl, P.J., Duodu, K.G. et al. Enrichment of maize and triticale bran with recombinant Aspergillus tubingensis ferulic acid esterase. J Food Sci Technol 54, 778–785 (2017). https://doi.org/10.1007/s13197-017-2521-z

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2521-z

Keywords

Profiles

  1. Karl Rumbold