Journal of Food Science and Technology

, Volume 54, Issue 3, pp 639–649 | Cite as

UvrA expression of Lactococcus lactis NZ9000 improve multiple stresses tolerance and fermentation of lactic acid against salt stress

  • Taher Khakpour Moghaddam
  • Juan Zhang
  • Guocheng Du
Original Article


Lactococcus lactis is subjected to several stressful conditions during industrial fermentation including oxidation, heating and cooling, acid, high osmolarity/dehydration and starvation. DNA lesion is a major cause of genetic instability in L. lactis that usually occurs at a low frequency, but it is greatly enhanced by environmental stresses. DNA damages produced by these environmental stresses are thought to induce DNA double-strand breaks, leading to illegitimate recombination. Nucleotide excision repair (NER) protein UvrA suppresses multiple stresses-induced illegitimate recombination. UvrA protein can survive a coincident condition of environmental harsh conditions, multiple stress factors supposedly encountered in the host and inducing UvrA in L. lactis. In this study the expression of UvrA and growth performance and viability of control strain L. lactisVector and recombinant strain L. lactisUvrA under multiple stress conditions were determined. The recombinants strain had 30.70 and 52.67% higher growth performances when subjected to acidic and osmotic stresses conditions. In addition, the L. lactisUvrA strain showed 1.85-, 1.65-, and 2.40-fold higher biomass, lactate production, and lactate productivity, compared with the corresponding values for L. lactisVector strain during the osmotic stress. Results demonstrated NER system is involved in adaptation to various stress conditions and suggested that cells with a compromised UvrA as DNA repair system have an enhanced protection behavior in L. lactis NZ9000 against DNA damage.


UvrA expression Lactococcus lactis NZ9000 Multiple stresses Lactate productivity 



Lactic acid bacteria


Gastro intestinal tract


Nucleotide excision repair


Acid tolerance response


Lactate dehydrogenase


Ultraviolet radiation


Colony forming unit


Optical density at 600 nm


Nisin controlled gene expression



This work is supported by the National High Technology Research and Development Program of China (863 Program, 2011AA100901), the Major State Basic Research Development Program of China (973 Program, 2013 CB733902), the Natural Science Foundation of Jiangsu Province (BK2012553) and the National Key Technology R&D Program of China (2011BAK10B03).

Supplementary material

13197_2017_2493_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 20 kb)


  1. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  2. Cappa F, Cattivelli D, Cocconcelli PS (2005) The uvrA gene is involved in oxidative and acid stress responses in Lactobacillus helveticus CNBL1156. Res Microbiol 156:1039–1047. doi: 10.1016/j.resmic.2005.06.003 CrossRefGoogle Scholar
  3. Carrete R, Vidal MT, Bordons A, Constanti M (2002) Inhibitory effect of sulfur dioxide and other stress compounds in wine on the ATPase activity of Oenococcus oeni. FEMS Microbiol Lett 211:155–159. doi: 10.1111/j.1574-6968.2002.tb11218.x CrossRefGoogle Scholar
  4. Christensen LA, Wang H, Van Houten B, Vasquez KM (2008) Efficient processing of TFO-directed psoralen DNA interstrand crosslinks by the UvrABC nuclease. Nucleic Acids Res 36:7136–7145. doi: 10.1093/nar/gkn880 CrossRefGoogle Scholar
  5. Czeczot H, Tudek B, Lambert B, Laval J, Boiteux S (1991) Escherichia-coli fpg protein and uvrabc endonuclease repair dna damage induced by methylene-blue plus visible-light in vivo and in vitro. J Bacteriol 173:3419–3424CrossRefGoogle Scholar
  6. Da Silveira MG, Golovina EA, Hoekstra FA, Rombouts FM, Abee T (2003) Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells. Appl Environ Microbiol 69:5826–5832. doi: 10.1128/aem.69.10.5826-5832.2003 CrossRefGoogle Scholar
  7. de Almeida WLG, Ferrari ID, de Souza JV, da Silva CDA, da Costa MM, Dias FS (2015) Characterization and evaluation of lactic acid bacteria isolated from goat milk. Food Control 53:96–103. doi: 10.1016/j.foodcont.2015.01.013 CrossRefGoogle Scholar
  8. Deaconescu AM, Sevostyanova A, Artsimovitch I, Grigorieff N (2012) Nucleotide excision repair (NER) machinery recruitment by the transcription-repair coupling factor involves unmasking of a conserved intramolecular interface. Proc Natl Acad Sci USA 109:3353–3358. doi: 10.1073/pnas.1115105109 CrossRefGoogle Scholar
  9. del Rio B, Ladero V, Redruello B, Linares DM, Fernandez M, Martin MC, Alvarez MA (2015) Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent. Food Microbiol 48:163–170. doi: 10.1016/ CrossRefGoogle Scholar
  10. Desroche N, Beltramo C, Guzzo J (2005) Determination of an internal control to apply reverse transcription quantitative PCR to study stress response in the lactic acid bacterium Oenococcus oeni. J Microbiol Methods 60:325–333. doi: 10.1016/j.mimet.2004.10.010 CrossRefGoogle Scholar
  11. Diakogiannis I, Berberi A, Siapi E, Arkoudi-Vafea A, Giannopoulou L, Mastronicolis SK (2013) Growth and membrane fluidity of food-borne pathogen Listeria monocytogenes in the presence of weak acid preservatives and hydrochloric acid. Front Microbiol 4:6. doi: 10.3389/fmicb.2013.00152 CrossRefGoogle Scholar
  12. Fu RY, Chen J, Li Y (2005) Heterologous leaky production of transglutaminase in Lactococcus lactis significantly enhances the growth performance of the host. Appl Environ Microbiol 71:8911–8919. doi: 10.1128/aem.71.12.8911-8919.2005 CrossRefGoogle Scholar
  13. Garcia-Ruiz A, de Llano DG, Esteban-Fernandez A, Requena T, Bartolome B, Moreno-Arribas MV (2014) Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiol 44:220–225. doi: 10.1016/ CrossRefGoogle Scholar
  14. Gautier J, Passot S, Penicaud C, Guillemin H, Cenard S, Lieben P, Fonseca F (2013) A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1. J Dairy Sci 96:5591–5602. doi: 10.3168/jds.2013-6802 CrossRefGoogle Scholar
  15. Hamilton HM, Wilson R, Blythe M, Nehring RB, Fonville NC, Louis EJ, Rosenberg SM (2013) Thymineless death is inhibited by CsrA in Escherichia coli lacking the SOS response. DNA Repair 12:993–999. doi: 10.1016/j.dnarep.2013.08.011 CrossRefGoogle Scholar
  16. Hanna MN, Ferguson RJ, Li YH, Cvitkovitch DG (2001) uvrA is an acid-inducible gene involved in the adaptive response to low pH in Streptococcus mutans. J Bacteriol 183:5964–5973. doi: 10.1128/jb.183.20.5964-5973.2001 CrossRefGoogle Scholar
  17. Holo H, Nes IF (1989) High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123Google Scholar
  18. Hori M et al (2007) UvrA and UvrB enhance mutations induced by oxidized deoxyribonucleotides. DNA Repair 6:1786–1793. doi: 10.1016/j.dnarep.2007.06.013 CrossRefGoogle Scholar
  19. Houten BV (2013) Nucleotide excision repair, bacterial: the UvrABCD system. Reference module in biomedical sciences. Encycl Biol Chem 2:328–336. doi: 10.1016/B978-0-12-378630-2.00253-X CrossRefGoogle Scholar
  20. Jiao LX, Ran JJ, Xu XX, Wang JJ (2015) Heat, acid and cold stresses enhance the expression of DnaK gene in Alicyclobacillus acidoterrestris. Food Res Int 67:183–192. doi: 10.1016/j.foodres.2014.11.023 CrossRefGoogle Scholar
  21. Kiyosawa K, Tanaka M, Matsunaga T, Nikaido O, Yamamoto K (2001) Amplified UvrA protein can ameliorate the ultraviolet sensitivity of an Escherichia coli recA mutant. Mutat Res DNA Repair 487:149–156. doi: 10.1016/s0921-8777(01)00114-8 CrossRefGoogle Scholar
  22. Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21CrossRefGoogle Scholar
  23. Lage C, Teixeira PCN, Leitao AC (2000) Non-coherent visible and infrared radiation increase survival to UV (254 nm) in Escherichia coli K12. J Photochem Photobiol B Biol 54:155–161. doi: 10.1016/s1011-1344(00)00010-5 CrossRefGoogle Scholar
  24. Lage C, Goncalves SRF, Souza LL, de Padula M, Leitao AC (2010) Differential survival of Escherichia coli uvrA, uvrB, and uvrC mutants to psoralen plus UV-A (PUVA): evidence for uncoupled action of nucleotide excision repair to process DNA adducts. J Photochem Photobiol B Biol 98:40–47. doi: 10.1016/j.jphotobiol.2009.11.001 CrossRefGoogle Scholar
  25. Ogasawara H, Teramoto J, Yamamoto S, Hirao K, Yamamoto K, Ishihama A, Utsumi R (2005) Negative regulation of DNA repair gene (uvrA) expression by ArcA/ArcB two-component system in Escherichia coli. FEMS Microbiol Lett 251:243–249. doi: 10.1016/j.femsle.2005.08.006 CrossRefGoogle Scholar
  26. Pakotiprapha D, Samuels M, Shen K, Hu JH, Jeruzalmi D (2012) Structure and mechanism of the UvrA–UvrB DNA damage sensor. Nat Struct Mol Biol 19:291–298. doi: 10.1038/nsmb.2240 CrossRefGoogle Scholar
  27. Rubio R, Jofre A, Martin B, Aymerich T, Garriga M (2014) Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages. Food Microbiol 38:303–311. doi: 10.1016/ CrossRefGoogle Scholar
  28. Salema M, Lolkema JS, SanRomao MV, Dias MCL (1996) The proton motive force generated in Leuconostoc oenos by L-malate fermentation. J Bacteriol 178:3127–3132CrossRefGoogle Scholar
  29. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  30. Schalow BJ, Courcelle CT, Courcelle J (2011) Escherichia coli Fpg glycosylase is nonrendundant and required for the rapid global repair of oxidized purine and pyrimidine damage in vivo. J Mol Biol 410:183–193. doi: 10.1016/j.jmb.2011.05.004 CrossRefGoogle Scholar
  31. Sidorenko J, Ukkivi K, Kivisaar M (2015) NER enzymes maintain genome integrity and suppress homologous recombination in the absence of exogenously induced DNA damage in Pseudomonas putida. DNA Repair 25:15–26. doi: 10.1016/j.dnarep.2014.11.001 CrossRefGoogle Scholar
  32. Siragusa S, De Angelis M, Calasso M, Campanella D, Minervini F, Di Cagno R, Gobbetti M (2014) Fermentation and proteome profiles of Lactobacillus plantarum strains during growth under food-like conditions. J Proteomics 96:366–380. doi: 10.1016/j.jprot.2013.11.003 CrossRefGoogle Scholar
  33. Song S, Bae DW, Lim K, Griffiths MW, Oh S (2014) Cold stress improves the ability of Lactobacillus plantarum L67 to survive freezing. Int J Food Microbiol 191:135–143. doi: 10.1016/j.ijfoodmicro.2014.09.017 CrossRefGoogle Scholar
  34. Svensater G, Sjogreen B, Hamilton IR (2000) Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins. Microbiology-(UK) 146:107–117CrossRefGoogle Scholar
  35. van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82:187–216. doi: 10.1023/a:1020631532202 CrossRefGoogle Scholar
  36. Watanabe M, van der Veen S, Nakajima H, Abee T (2012) Effect of respiration and manganese on oxidative stress resistance of Lactobacillus plantarum WCFS1. Microbiology 158:293–300. doi: 10.1099/mic.0.051250-0 CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2017

Authors and Affiliations

  • Taher Khakpour Moghaddam
    • 1
    • 2
  • Juan Zhang
    • 1
    • 2
  • Guocheng Du
    • 1
    • 2
  1. 1.Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.School of BiotechnologyJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations