Journal of Food Science and Technology

, Volume 54, Issue 3, pp 846–851 | Cite as

Extraction, chemical characterization and antioxidant activity of Litchi chinensis Sonn. and Avena sativa L. seeds extracts obtained from pressurized n-butane

  • Marshall Paliga
  • Zuleica Novello
  • Rogério M. Dallago
  • Jaqueline Scapinello
  • Jacir Dal Magro
  • Marco Di Luccio
  • Marcus V. Tres
  • J. Vladimir Oliveira
Short Communication

Abstract

The extraction of litchi (Litchi chinensis Sonn.) and oat (Avena sativa L.) seeds were investigated using n-butane as pressurized solvent by evaluating the effect of pressure in the range of 7–100 bar and temperature from 25 to 70 °C on the extract yield and chemical composition together with the antioxidant activity of the extracts obtained. It was experimentally observed extraction yields for both seeds up to ~3.5 wt%, with a total phenolic content around 126.4 mg GAE/100 g of extract, and an antioxidant activity up to 78.36%. Oat seeds extract presented higher values of these parameters evaluated compared to litchi extract. Based on the results found, it seems that n-butane may be a promising solvent to conventional extraction methods, as mild operating conditions and eco-friendly solvent can be used to provide good results without any residues in the final product.

Keywords

Litchi chinensis Sonn. Avena sativa L. Extraction n-Butane Chemical characterization Antioxidant activity 

Notes

Acknowledgements

The authors thank CNPq, CAPES, FAPERGS, Transfertech Gestão de Inovações LTDA and URI Erechim for financial support and scholarships.

References

  1. Ballus CA, Quirantes-Piné R, Bakhouche A, Silva LF, Oliveira AF, Coutinho EF, Croce DM, Segura-Carretero A, Godoy HT (2015) Profile of phenolic compounds of Brazilian virgin olive oils by rapid resolution liquid chromatography coupled to electrospray ionization time-of-flight mass spectrometry (RRLC–ESI-TOF-MS). Food Chem 170:366CrossRefGoogle Scholar
  2. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25CrossRefGoogle Scholar
  3. Daou C, Zhang H (2012) Oat beta-glucan: its role in health promotion and prevention of diseases. Compr Rev Food Sci Food Saf 11:355CrossRefGoogle Scholar
  4. Jacques RA, Krause LC, Freitas LS, Dariva C, Oliveira JV, Caramão EB (2007) Influence of drying methods and agronomic variables on the chemical composition of mate tea leaves (Ilex paraguariensis A. St.-Hil) obtained from high-pressure CO2 extraction. J Agric Food Chem 55:10081CrossRefGoogle Scholar
  5. Lima RAZ, Abreu CMP, Asmar SA, Corrêa AD, Santos CD (2010) Embalagens e recobrimento em lichias (Litchi chinensis Sonn.) armazenadas sob condições não controladas. Ciênc Agrotecnol Lavras 34:914CrossRefGoogle Scholar
  6. Liu SC, Lin JT, Wang CK, Chen HY, Yang DJ (2009) Antioxidant properties of various solvent extracts from lychee (Litchi chinenesis Sonn.) flowers. Food Chem 114:577CrossRefGoogle Scholar
  7. Mesomo MC, Scheer AP, Perez E, Ndiaye PM, Corazza ML (2012) Ginger (Zingiber officinale R.) extracts obtained using supercritical CO2 and compressed propane: kinetics and antioxidant activity evaluation. J Supercrit Fluids 71:102CrossRefGoogle Scholar
  8. Naczk M, Shahidi F (1989) The effect of methanol-ammonia-water treatment on the content of phenolic acids of canola. Food Chem 31:159CrossRefGoogle Scholar
  9. Novello Z, Scapinello J, Magro JD, Zin G, Di Luccio M, Tres MV, Oliveira JV (2015) Extraction, chemical characterization and antioxidant activity of andiroba seeds oil obtained from pressurized n-butane. Ind Crops Prod 76:697CrossRefGoogle Scholar
  10. Peterson DM, Hahn MJ, Emmons CL (2002) Oat avenanthramides exhibit antioxidant activities in vitro. Food Chem 79:473CrossRefGoogle Scholar
  11. Poling BE, Prausnitz JM, O’Connell JP (2001) The properties of gases and liquids, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  12. Pomeranz Y (1982) Advances in cereal science and technology, vol 5. Am. Assoc. Cereal Chem, St. PaulGoogle Scholar
  13. Prasad KN, Yang B, Chen Y, Zhao M, Ashraf M, Jiang Y (2009) Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds. Food Chem 116:1CrossRefGoogle Scholar
  14. Qi S, Huang H, Huang J, Wang Q, Wei Q (2015) Lychee (Lichti chinensis Sonn.) seed water extract as potential antioxidant and anti-obese natural additive in meat products. Food Control 50:195CrossRefGoogle Scholar
  15. Queiroz ER, Abreu CMP, Oliveira KS, Ramos VO, Frágas RM (2015) Bioactive phytochemicals and antioxidant activity in fresh and dried lychee fractions. Rev Ciênc Agron 46:163CrossRefGoogle Scholar
  16. Sage B, Reamer H, Olds R, Lacey W (1942) Phase equilibria in hydrocarbon systems. Ind Eng Chem 34:1108CrossRefGoogle Scholar
  17. Shahidi F, Naczk M (1995) Food phenolics: sources, chemistry, effects, applications. Technomic Publishing Company, Incorporated, LancasterGoogle Scholar
  18. Su D, Huihui T, Zhang R, Wei Z, Deng Y, Guo J (2014) Structural elucidation and cellular antioxidant activity evaluation of major antioxidant phenolics in lychee pulp. Food Chem 158:385CrossRefGoogle Scholar
  19. Sung YY, Yang WK, Kim HK (2012) Antiplatelet, anticoagulant and fibrinolytic effects of Litchi chinensis Sonn. extract. Mol Med Rep 5:721Google Scholar
  20. Tonini H, Kaminski PE (2009) Processo Tradicional da Extração e Usos do Óleo da Andiroba em Roraima. EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária), Boa VistaGoogle Scholar
  21. Xu X, Haihui Xie, Liangxiong Xu, Xiaoyi Wei (2011) A novel cyclopropyl-containing fatty acid glucoside from the seeds of Litchi chinensis. Fitoterapia 82:485CrossRefGoogle Scholar
  22. Yang D, Chang Y, Chen C, Liu S, Hsu C, Lin J (2012) Antioxidant effect and active components of litchi (Litchi chinensis Sonn.) flower. Food Chem Toxicol 50:3056CrossRefGoogle Scholar
  23. Yang D, Chang Y, Lin H, Chen Y, Hsu S, Lin J (2014) Inhibitory effect of litchi (Litchi chinensis Sonn.) flower on lipopolysaccharide-induced expression of proinflammatory mediators in RAW264.7 cells through NF-κB, ERK, and JAK2/STAT3 inactivation. J Agric Food Chem 62:3458CrossRefGoogle Scholar
  24. Zhao M, Yang B, Wang J, Liu Y, Yu L, Jiang Y (2007) Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Litchi chinensis Sonn.) pericarp. Int Immunopharmacol 7:162CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2017

Authors and Affiliations

  • Marshall Paliga
    • 1
  • Zuleica Novello
    • 1
  • Rogério M. Dallago
    • 1
  • Jaqueline Scapinello
    • 2
  • Jacir Dal Magro
    • 2
  • Marco Di Luccio
    • 3
  • Marcus V. Tres
    • 4
  • J. Vladimir Oliveira
    • 2
    • 3
  1. 1.Department of Food EngineeringURI ErechimErechimBrazil
  2. 2.Programa de Pós Graduação em Ciências AmbientaisUNOCHAPECÓChapecóBrazil
  3. 3.Department of Chemical and Food EngineeringUFSCFlorianópolisBrazil
  4. 4.Federal University of Santa Maria (UFSM)Cachoeira do SulBrazil

Personalised recommendations