Advertisement

Journal of Food Science and Technology

, Volume 54, Issue 3, pp 611–619 | Cite as

Using high hydrostatic pressures to retain the antioxidant compounds and to reduce the enzymatic activity of a pitaya–pineapple (Stenocereus sp.–Fragaria ananassa) beverage

  • Luisaldo Sandate-Flores
  • Magdalena de J. Rostro-Alanis
  • Elena Ivonne Mancera-Andrade
  • Diego A. Esquivel-Hernandez
  • Carlos Brambila-Paz
  • Roberto Parra-Saldívar
  • Jorge Welti-Chanes
  • Zamantha Escobedo-Avellaneda
  • José Rodríguez-Rodríguez
Original Article

Abstract

Pitaya (Stenocereus sp.) is a fruit native to arid and semiarid areas of Mexico. It has high antioxidant activity mainly due to its contents of betalains and phenolics, but its consumption is limited due to very short shelf-life and not very recognized flavor. A beverage of pitaya and pineapple was formulated to improve sensory properties. A high hydrostatic pressure (HHP) study at 400–600 MPa and 25 °C for 2–10 min was applied in the beverage and the effect on the contents of vitamin C, total phenolics and betalains, and the pectin methylesterase (PME) activity of pitaya–pineapple beverages, was evaluated. The effect of the come up time (CUT) was also studied. Vitamin C contents increased from 5% at 600 MPa-CUT to 64% at 400 MPa/CUT. Total phenolic concentrations decreased (20–48%) at all processing conditions tested at 400 MPa/CUT, total betacyanins were retained. At 500 MPa/10 min losses of betaxanthins of up to 6% occurred. The maximum PME activity decrease was 23% at 600 MPa 5 min, but an increase of PME activity 7% was observed at 400 MPa/10 min. HHP seem to be a good option to retain most of the antioxidant compounds in pitaya–pineapple beverage, but more studies are necessary to inactivate PME.

Keywords

Pitaya (Stenocereus sp.) High hydrostatic pressure Betacyanin Betaxanthins Vitamin C Pectin methylesterase 

Notes

Acknowledgements

The authors express their gratitude to Legado Base de la Pirámide and Tecnologico de Monterrey for their financial support, to the Emerging Technologies and Molecular Nutrition research group, FEMSA Biotechnology Center and Water Center for their facilities used in this project. We thank to all our colleagues from the Environmental Bioprocesses research group for their support, especially to Pablo Girard García López, Giselle Sánchez Resendiz and Leonel Peña for their help in the laboratory.

References

  1. AOAC (1990) Moisture gravimetric method. In: AOAC Official Method 934.06. AOAC InternationalGoogle Scholar
  2. Ball GFM (2005) Vitamins in foods: analysis, bioavailability, and stability. Taylor & Francis Group, Boca RatonCrossRefGoogle Scholar
  3. Bauman AE (2004) Updating the evidence that physical activity is good for health: an epidemiological review 2000–2003. J Sci Med Sport 7:6–19CrossRefGoogle Scholar
  4. Bermúdez-Aguirre D, Guerrero-Beltrán J, Barbosa-Cánovas GV, Welti-Chanes J (2011) Study of the inactivation of Escherichia coli and pectin methylesterase in mango nectar under selected high hydrostatic pressure treatments. Food Sci Technol Int 17:541–547. doi: 10.1177/1082013211399681 CrossRefGoogle Scholar
  5. Castaldo D, Laratta B, Loiudice R et al (1997) Presence of residual pectin methylesterase activity in thermally stabilized industrial fruit preparations. LWT Food Sci Technol 30:479–484CrossRefGoogle Scholar
  6. Chakraborty S, Rao PS, Mishra HN (2014) Effect of pH on enzyme inactivation kinetics in high-pressure processed pineapple (Ananas comosus L.) puree using response surface methodology. Food Bioprocess Technol 7:3629–3645. doi: 10.1007/s11947-014-1380-0 CrossRefGoogle Scholar
  7. Chakraborty S, Rao PS, Mishra HN (2015) Effect of combined high pressure–temperature treatments on color and nutritional quality attributes of pineapple (Ananas comosus L.) puree. Innov Food Sci Emerg Technol 28:10–21. doi: 10.1016/j.ifset.2015.01.004
  8. Chavez-Santoscoy RA, Gutierrez-Uribe JA, Serna-Saldívar SO (2009) Phenolic composition, antioxidant capacity and in vitro cancer cell cytotoxicity of nine prickly pear (Opuntia spp.) juices. Plant Foods Hum Nutr 64:146–152. doi: 10.1007/s11130-009-0117-0 CrossRefGoogle Scholar
  9. Chuck-Hernández C, Sandate-Flores L, Parra-Saldívar R (2016) Pitaya (Stenocereus spp.), 1st edn. Elsevier, AmsterdamGoogle Scholar
  10. Chutintrasri B, Noomhorm A (2006) Thermal inactivation of polyphenoloxidase in pineapple puree. LWT Food Sci Technol 39:492–495. doi: 10.1016/j.lwt.2005.04.006 CrossRefGoogle Scholar
  11. Dragsted LO (2003) Antioxidant actions of polyphenols in humans. Int J Vitam Nutr Res 73:112–119CrossRefGoogle Scholar
  12. Eisenmenger MJ, Reyes-De-Corcuera JI (2009) High pressure enhancement of enzymes: a review. Enzyme Microb Technol 45:331–347. doi: 10.1016/j.enzmictec.2009.08.001 CrossRefGoogle Scholar
  13. Escobedo-Avellaneda Z, Pateiro-Moure M, Chotyakul N et al (2011) Benefits and limitations of food processing by high-pressure technologies: effects on functional compounds and abiotic contaminants. J Food 9:351–364. doi: 10.1080/19476337.2011.616959 Google Scholar
  14. Escobedo-Avellaneda Z, Gutiérrez-Uribe J, Valdez-Fragoso A et al (2014) Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. J Funct Foods 6:470–481. doi: 10.1016/j.jff.2013.11.013 CrossRefGoogle Scholar
  15. Esteve MJ, Frigola A (2008) The effects of thermal and nonthermal processing on vitamin C, carotenoids, phenolic compounds and total antioxidant capacity in orange juice. Citrus I Tree For Sci Biotechnol 2:128–134Google Scholar
  16. García AF, Butz P, Bognàr A, Tauscher B (2001) Antioxidative capacity, nutrient content and sensory quality of orange juice and an orange–lemon–carrot juice product after high pressure treatment and storage in different packaging. Eur Food Res Technol 213:290–296CrossRefGoogle Scholar
  17. García-Cruz L, Valle-Guadarrama S, Salinas-Moreno Y, Joaquín-Cruz E (2013) Physical, chemical, and antioxidant activity characterization of pitaya (Stenocereus pruinosus) fruits. Plant Food Hum Nutr 38:403–410. doi: 10.1007/s11130-013-0391-8 CrossRefGoogle Scholar
  18. Herbach KM, Stintzing FC, Carle R (2006) Betalain stability and degradation Structural and chromatic aspects. J Food Sci 71:R41–R50. doi: 10.1111/j.1750-3841.2006.00022.x CrossRefGoogle Scholar
  19. Herbach KM, Maier C, Stintzing FC, Carle R (2007) Effects of processing and storage on juice colour and betacyanin stability of purple pitaya (Hylocereus polyrhizus) juice. Eur Food Res Technol 224:649–658. doi: 10.1007/s00217-006-0354-5 CrossRefGoogle Scholar
  20. Horemans N, Foyer HC, Potters G, Asard H (2000) Ascorbate function and associated transport systems in plants. Plant Physiol Biochem 38:531–540. doi: 10.1016/S0981-9428(00)00782-8 CrossRefGoogle Scholar
  21. Jiménez-Aguilar DM, Escobedo-Avellaneda Z, Martín-Belloso O et al (2015a) Effect of high hydrostatic pressure on the content of phytochemical compounds and antioxidant activity of prickly pears (Opuntia ficus-indica) beverages. Food Eng Rev 7:198–208. doi: 10.1007/s12393-015-9111-5 CrossRefGoogle Scholar
  22. Jiménez-Aguilar DM, López-Martínez JM, Hernández-Brenes C et al (2015b) Dietary fiber, phytochemical composition and antioxidant activity of Mexican commercial varieties of cactus pear. J Food Compos Anal 41:66–73. doi: 10.1016/j.jfca.2015.01.017 CrossRefGoogle Scholar
  23. Kuo-Chiang H (2008) Evaluation of processing qualities of tomato juice induced by thermal and pressure processing. LWT Food Sci Technol 41:450–459. doi: 10.1016/j.lwt.2007.03.022 CrossRefGoogle Scholar
  24. Ludikhuyze L, Van Loey AI, Denys S, Hendrickx MEG (2001) Ultra high pressure treatments of foods. In: Hendrickx M, Dietrich KE (eds) Ultra high pressure tretaments of foods. Springer Science + Bussiness Media, New York, pp 115–166CrossRefGoogle Scholar
  25. Patras A, Brunton NP, Da Pieve S, Butler F (2009) Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innov Food Sci Emerg Technol 10:308–313. doi: 10.1016/j.ifset.2008.12.004 CrossRefGoogle Scholar
  26. Polydera AC, Galanou E, Stoforos NG, Taoukis PS (2004) Inactivation kinetics of pectin methylesterase of greek Navel orange juice as a function of high hydrostatic pressure and temperature process conditions. J Food Eng 62:291–298. doi: 10.1016/S0260-8774(03)00242-5 CrossRefGoogle Scholar
  27. Pozo-Insfran D, Follo-Martinez D, Talcott ST, Brenes CH (2007) Stability of copigmented anthocyanins and ascorbic acid in muscadine grape juice processed by high hydrostatic pressure. J Food Sci 72:S247–S253CrossRefGoogle Scholar
  28. Rebolledo MA, Uriza DEA, Rebolledo ML (2000) The pineapple in Mexico: current status and prospects. Acta Hortic 529:85–89. doi: 10.17660/ActaHortic.2000.529.8 CrossRefGoogle Scholar
  29. Sandate-Flores L, Rodríguez-Rodríguez J, Calvo-Segura S et al (2016) Evaluation of different methods for betanin quantification in pitaya (Stenocereus spp.). Agro Food Ind Hi Tech 27:20–25Google Scholar
  30. Santos J, Mendiola JA, Oliveira MBPP et al (2012) Sequential determination of fat- and water-soluble vitamins in green leafy vegetables during storage. J Chromatogr A 1261:179–188. doi: 10.1016/j.chroma.2012.04.067 CrossRefGoogle Scholar
  31. Tejada-Ortigoza V, Escobedo-Avellaneda Z, Valdez-Fragoso A et al (2015) Combined effect of high hydrostatic pressure and mild heat treatments on pectin methylesterase (PME) inactivation in comminuted orange. J Sci Food Agric 95:2438–2444. doi: 10.1002/jsfa.6969 CrossRefGoogle Scholar
  32. USDA (2015) Page reports. In: United States Department of Agricultural Research Service. http://www.ars.usda.gov/Services/docs.htm?docid=25701
  33. Vinson JA, Su X, Zubik L, Bose P (2001) Phenol antioxidant quantity and quality in foods: fruits. J Agric Food Chem 49:5315–5321. doi: 10.1021/jf0009293 CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2017

Authors and Affiliations

  • Luisaldo Sandate-Flores
    • 1
  • Magdalena de J. Rostro-Alanis
    • 1
  • Elena Ivonne Mancera-Andrade
    • 1
  • Diego A. Esquivel-Hernandez
    • 1
  • Carlos Brambila-Paz
    • 2
  • Roberto Parra-Saldívar
    • 1
  • Jorge Welti-Chanes
    • 1
  • Zamantha Escobedo-Avellaneda
    • 1
  • José Rodríguez-Rodríguez
    • 1
  1. 1.Escuela de Ingeniería y CienciasTecnológico de MonterreyMonterreyMexico
  2. 2.Escuela de GobiernoCiudad de MéxicoMexico

Personalised recommendations