Skip to main content
Log in

Encapsulation of antioxidant peptide enriched casein hydrolysate using maltodextrin–gum arabic blend

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Antioxidant peptide enriched casein hydrolysate (AO–CH) are receiving increasing attention due to their potential as functional ingredient. Encapsulation of AO–CH using maltodextrin–gum arabic (MD/GA) as wall material could represent an attractive approach to overcome the problems related to their direct application. Encapsulation parameter were optimized using different ratio of core to coat and proportion of coating material (10:0, 8:2, 6:4) under varying pH (2–8) for encapsulation efficiency (EE).The preparation P3 resulted in maximum EE (87%) using core to coat ratio 1:20, at pH 6.0 with 8:2 MD/GA ratio. The encapsulated preparation showed reduced bitterness (p < 0.05) compared to the casein hydrolysate together with maximum retention of antioxidant activity (93%). Further, the narrow range of particle size, indicates their better stability and represents a promising food additive for incorporation in food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aldler-Nissen J (1986) Enzymic hydrolysis of food proteins. Elsevier Applied Science Publishers, New York, pp 110–169

    Google Scholar 

  • Alftren J, Penarrieta J, Bergenstahl B, Nilsson L (2012) Comparison of molecular and emulsifying properties of gum arabic and mesquite gum using asymmetrical flow field-flow fractionation. Food Hydrocolloids 26(1):54–62

    Article  CAS  Google Scholar 

  • Anandharamakrishnan C, Rielly C, Stapley A (2010) Spray-freeze-drying of whey proteins at sub-atmospheric pressures. Dairy Sci Technol 90(2–3):321–334

    Article  CAS  Google Scholar 

  • Anderson D, Douglas D, Morrison N, Weiping W (1990) Specifications for gum arabic (Acacia Senegal); analytical data for samples collected between 1904 and 1989. Food Addit Contam 7(3):303–321

    Article  CAS  Google Scholar 

  • Barbosa M, Borsarelli C, Mercadante A (2005) Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Res Int 38(8–9):989–994

    Article  CAS  Google Scholar 

  • Cliek B (2012) Microencapsulation of phenolic compounds extracted from sour cherry (Prunuscerasus l.) pomace. The graduate school of natural and applied sciences of Middle East technical university, 1–187

  • Erdinc B, Neufeld RJ (2011) Protein micro and nanoencapsulation within glycol-chitosan/Ca2 +/alginate matrix by spray drying. Drug Dev Ind Pharm 37(6):619–627

    Article  CAS  Google Scholar 

  • Ezhilarasi PN, Indrani D, Jena BS, Anandharamakrishnan C (2013) Freeze drying technique for microencapsulation of garcinia fruit extract and its effect on bread quality. J Food Eng 117:513–520

    Article  CAS  Google Scholar 

  • Finotelli PV, Rocha-Leao M (2005) Microencapsulation of ascorbic acid in maltodextrin and capsule using spray drying. http://www.enpromer2005.eq.ufrj.br/nukleo/pdfs/0022_aa pdf Paper. Accessed 08th July 2016

  • Hartmann R, Meisel H (2007) Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 18:163

    Article  CAS  Google Scholar 

  • Hernandez-Ledesma B, del Mar Contreras M, Recio I (2011) Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interface Sci 165(1):23–35

    Article  CAS  Google Scholar 

  • Kim G, Jang H, Kim C (2007) Antioxidant capacity of caseinophosphopeptides prepared from sodium caseinate using Alcalase. Food Chem 104(4):1359–1365

    Article  CAS  Google Scholar 

  • Krishnan S, Bhosale R, Singhal R (2005) Microencapsulation of cardamom oleoresin: evaluation of blends of gum arabic, maltodextrin and a modified starch as wall materials. Carbohydr Polym 61(1):95–102

    Article  CAS  Google Scholar 

  • Kurozawa LE, Park KJ, Hubinger MD (2009) Effect of carrier agents on the physicochemical properties of a spray dried chicken meat hydrolysate. J Food Eng 94:326–333

    Article  CAS  Google Scholar 

  • Li Y, Jiang B, Zhang T, Mu W, Liu J (2008) Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem 106(2):444–450

    Article  CAS  Google Scholar 

  • Lopez-Exposito I, Quiros A, Amigo L, Recio I (2007) Casein hydrolysates as a source of antimicrobial, antioxidant and antihypertensive peptides. Lait 87:241–249

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin’s phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  • Ma J, Mao X, Wang Q, Yang S, Zhang D, Chen S, Li Y (2014) Effect of spray drying and freeze drying on the immunomodulatory activity, bitter taste and hygroscopicity of hydrolysate derived from whey protein concentrate. LWT Food Sci Technol 56(2):296–302

    Article  CAS  Google Scholar 

  • Meisel H, Fitzgerald RJ (2003) Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr Pharm Des 9:1289–1295

    Article  CAS  Google Scholar 

  • Mendanha D, Molina Ortiz S, Favaro-Trindade C, Mauri A, Monterrey-Quintero E, Thomazini M (2009) Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin. Food Res Int 42(8):1099–1104

    Article  CAS  Google Scholar 

  • Moure A, Domanguez H, Paraja J (2006) Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem 41(2):447–456

    Article  CAS  Google Scholar 

  • Nielsen P, Petersen D, Dambmann C (2001) Improved method for determining food protein degree of hydrolysis. J Food Sci 66(5):642–646

    Article  CAS  Google Scholar 

  • Ortiz MS, Mauri A, Monterrey-Quintero E, Trindade M, Santana A, Favaro-Trindade C (2009) Production and properties of casein hydrolysate microencapsulated by spray drying with soybean protein isolate. LWT Food Sci Technol 42(5):919–923

    Article  Google Scholar 

  • Peres I, Rocha S, Gomes J, Morais S, Pereira M, Coelho M (2011) Preservation of catechin antioxidant properties loaded in carbohydrate nanoparticles. Carbohydr Polym 86(1):147–153

    Article  CAS  Google Scholar 

  • Phelan M, Aherne A, Fitzgerald RJ, O’Brien NM (2009) Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int Dairy J 19:643

    Article  CAS  Google Scholar 

  • Power O, Jakeman P, FitzGerald R (2012) Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids 44(3):797–820

    Article  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cationdecolorization assay. Free Radic Biol Med 26(9–10):1231–1237

    Article  CAS  Google Scholar 

  • Saha BC, Hayashi K (2001) Debittering of protein hydrolysates. Biotechnol Adv 19:355

    Article  CAS  Google Scholar 

  • Subtil S, Rocha-Selmi G, Thomazini M, Trindade M, Netto F, Favaro-Trindade C (2012) Effect of spray drying on the sensory and physical properties of hydrolysed casein using gum arabic as the carrier. J Food Sci Technol 51(9):2014–2021

    Article  Google Scholar 

  • Tachakittirungrod S, Okonogi S, Chowwanapoonpohn S (2007) Study on antioxidant activity of certain plants in Thailand: mechanism of antioxidant action of guava leaf extract. Food Chem 103(2):381–388

    Article  CAS  Google Scholar 

  • Tauzin J, Miclo L, Roth S, Molla D, Gaillard J (2003) Tryptic hydrolysis of bovine αS2-casein: identification and release kinetics of peptides. Int Dairy J 13(1):15–27

    Article  CAS  Google Scholar 

  • Tomar SK, Prasad DN (1987) Effect of pre-heat treatment on microstrucutre of cow whole milk yoghurt as revealed by scanning electron microscopy. Microbiol Aliments Nurtr 5:345–350

    Google Scholar 

  • Trindade FC, Santana A, Monterrey-Quintero E, Trindade M, Netto F (2010) The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocolloids 24(4):336–340

    Article  Google Scholar 

  • Van der Ven C, Gruppen H, de Bont D, Voragen A (2002) Optimization of the angiotensin converting enzyme inhibition by whey protein hydrolysates using response surface methodology. Int Dairy J 12(10):813–820

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the SERB-MOFPI Project (SERB/MOFPI/0028/2013), Department of Science and Technology, Govt. of India, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Bajaj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, P.S., Bajaj, R., Mann, B. et al. Encapsulation of antioxidant peptide enriched casein hydrolysate using maltodextrin–gum arabic blend. J Food Sci Technol 53, 3834–3843 (2016). https://doi.org/10.1007/s13197-016-2376-8

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-016-2376-8

Keywords