Journal of Food Science and Technology

, Volume 53, Issue 9, pp 3602–3608 | Cite as

Characterization of swiftlet edible bird nest, a mucin glycoprotein, and its adulterants by Raman microspectroscopy

  • Eric K. S. Shim
  • Gleen F. Chandra
  • S. Pedireddy
  • Soo-Y. LeeEmail author
Original Article


Edible bird’s nest (EBN) is made from the glutinous salivary secretion of highly concentrated mucin glycoprotein by swiftlets (genus Aerodramus or Collocalia) native to the Indo-Pacific region. The unique Raman spectrum of EBN has vibrational lines that can be assigned to peptides and saccharides in the glycoprotein, and it can be used to screen for adulteration. The common edible adulterants classified into two types. Type I adulterants, such as fish bladder, pork skin, karaya gum, coralline seaweed, agar strips, and tremella fungus, were solids which adhered externally on the surface of the EBN cement. They can usually be detected with a microscope based on differences in the surface structure. Type II adulterants were water soluble substances such as saccharides (e.g., glucose, sucrose), polypeptides (e.g., hydrolyzed collagen) and salts (e.g. monosodium glutamate) which can be readily soaked up by the EBN hydrogel when moist and adsorbed internally in the EBN cement matrix forming a composite upon drying, making them difficult to detect visually. The present study showed that Raman microspectroscopy offers a rapid, non-invasive, and label free technique to detect both Type I and II adulterants in EBN.


Edible bird’s nest Raman microspectroscopy Mucin glycoprotein Adulterants Characterisation 


  1. Ashton L, Pudney PDA, Blanch EW, Yakubov GE (2013) Understanding glycoprotein behaviours using Raman and Raman optical activity spectroscopies: characterising the entanglement induced conformational changes in oligosaccharide chains of mucin. Adv Colloid Interface Sci 199–200:66–77. doi: 10.1016/j.cis.2013.06.005 CrossRefGoogle Scholar
  2. Chua YG, Chan SH, Bloodworth BC, Li SFY, Leong LP (2015) Identification of Edible Bird’s Nest with Amino Acid and Monosaccharide Analysis. J Agric Food Chem 63:279–289. doi: 10.1021/jf503157n CrossRefGoogle Scholar
  3. Guo C-T et al (2006) Edible bird’s nest extract inhibits influenza virus infection. Antivir Res 70:140–146. doi: 10.1016/j.antiviral.2006.02.005 CrossRefGoogle Scholar
  4. Haghani A, Mehrbod P, Safi N, Aminuddin NA, Bahadoran A, Omar AR, Ideris A (2016) In vitro and in vivo mechanism of immunomodulatory and antiviral activity of Edible Bird’s Nest (EBN) against influenza A virus (IAV) infection. J Ethnopharmacol 185:327–340. doi: 10.1016/j.jep.2016.03.020 CrossRefGoogle Scholar
  5. Hernández B, Coïc Y-M, Pflüger F, Kruglik SG, Ghomi M (2016) All characteristic Raman markers of tyrosine and tyrosinate originate from phenol ring fundamental vibrations. J Raman Spectrosc 47:210–220. doi: 10.1002/jrs.4776 CrossRefGoogle Scholar
  6. Herrero AM, Jiménez-Colmenero F, Carmona P (2009) Elucidation of structural changes in soy protein isolate upon heating by Raman spectroscopy. Int J Food Sci Technol 44:711–717. doi: 10.1111/j.1365-2621.2008.01880.x CrossRefGoogle Scholar
  7. Hun LT et al (2016) Gel electrophoretic and liquid chromatographic methods for the identification and authentication of cave and house edible bird’s nests from common adulterants. Anal Methods 8:526–536. doi: 10.1039/C5AY02170G CrossRefGoogle Scholar
  8. Ilaslan K, Boyaci IH, Topcu A (2015) Rapid analysis of glucose, fructose and sucrose contents of commercial soft drinks using Raman spectroscopy. Food Control 48:56–61. doi: 10.1016/j.foodcont.2014.01.001 CrossRefGoogle Scholar
  9. Ma F, Liu D (2012) Sketch of the edible bird’s nest and its important bioactivities. Food Res Int 48:559–567. doi: 10.1016/j.foodres.2012.06.001 CrossRefGoogle Scholar
  10. Marcone MF (2005) Characterization of the edible bird’s nest the “Caviar of the East”. Food Res Int 38:1125–1134. doi: 10.1016/j.foodres.2005.02.008 CrossRefGoogle Scholar
  11. Martin C, Bruneel J-L, Guyon F, Médina B, Jourdes M, Teissedre P-L, Guillaume F (2015) Raman spectroscopy of white wines. Food Chem 181:235–240. doi: 10.1016/j.foodchem.2015.02.076 CrossRefGoogle Scholar
  12. Mathlouthi M, Vinh Luu D (1980) Laser-raman spectra of d-glucose and sucrose in aqueous solution. Carbohydr Res 81:203–212. doi: 10.1016/S0008-6215(00)85652-9 CrossRefGoogle Scholar
  13. Nguyen TT, Gobinet C, Feru J, Pasco SB, Manfait M, Piot O (2012) Characterization of Type I and IV Collagens by Raman Microspectroscopy: identification of spectral markers of the dermo-epidermal junction. Spectrosc Int J 27:7. doi: 10.1155/2012/686183 CrossRefGoogle Scholar
  14. Pereira L, Sousa A, Coelho H, Amado AM, Ribeiro-Claro PJA (2003) Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification of some seaweed phycocolloids. Biomol Eng 20:223–228. doi: 10.1016/S1389-0344(03)00058-3 CrossRefGoogle Scholar
  15. Söderholm S, Roos YH, Meinander N, Hotokka M (1999) Raman spectra of fructose and glucose in the amorphous and crystalline states. J Raman Spectrosc 30:1009–1018CrossRefGoogle Scholar
  16. Vimala B, Hussain H, Nazaimoon WMW (2012) Effects of edible bird’s nest on tumour necrosis factor-alpha secretion, nitric oxide production and cell viability of lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Agric Immunol 23:303–314. doi: 10.1080/09540105.2011.625494 CrossRefGoogle Scholar
  17. Vinogradova E, Tlahuice-Flores A, Velazquez-Salazar JJ, Larios-Rodriguez E, Jose-Yacaman M (2014) Surface-enhanced Raman scattering of N-acetylneuraminic acid on silver nanoparticle surface. J Raman Spectrosc 45:730–735. doi: 10.1002/jrs.4544 CrossRefGoogle Scholar
  18. Wang CC (1921) The composition of Chinese edible bird’s nest and the nature of their proteins. J Biol Chem 49:429–439Google Scholar
  19. Wieruszeski JM et al (1987) Structure of the monosialyl oligosaccharides derived from salivary gland mucin glycoproteins of the Chinese swiftlet (genus Collocalia). Characterization of novel types of extended core structure, Gal beta(1—3)[GlcNAc beta(1—6)] GalNAc alpha(1—3)GalNAc(–ol), and of chain termination, [Gal alpha(1—4)]0–1[Gal beta(1—4)]2GlcNAc beta(1—.). J Biol Chem 262:6650–6657Google Scholar
  20. Yang D, Ying Y (2011) Applications of Raman spectroscopy in agricultural products and food analysis: a review. Appl Spectrosc Rev 46:539–560. doi: 10.1080/05704928.2011.593216 CrossRefGoogle Scholar
  21. Yang M, Cheung S-H, Li SC, Cheung H-Y (2014) Establishment of a holistic and scientific protocol for the authentication and quality assurance of edible bird’s nest. Food Chem 151:271–278. doi: 10.1016/j.foodchem.2013.11.007 CrossRefGoogle Scholar
  22. Zhang S et al (2013) Development of monoclonal antibodies and quantitative sandwich enxyme linked immunosorbent assay for the characteristic sialoglycoprotein of Edible bird’s nest. J Immunoass Immunochem 34:49–60. doi: 10.1080/15321819.2012.680527 CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2016

Authors and Affiliations

  1. 1.Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations