Skip to main content
Log in

Energetic and exergetic performance analysis and modeling of drying kinetics of kiwi slices

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

This work focused on the effects of the moisture content, slices thickness and microwave power on aspects of energy and exergy, drying kinetics, moisture diffusivity, activation energy, and modeling of the thin layer drying of kiwi slices. Results showed that energy and exergy efficiency increased with increasing microwave power and decreasing slice thickness while values of energy efficiency (15.15–32.27 %) were higher than exergy efficiency (11.35–24.68 %). Also, these parameters decreased with a decrease in moisture content. Specific energy consumption varied from 7.79 to 10.02, 8.59 to 10.77 and 9.57 to16.20 to MJ/kg water evaporated for 3, 6 and 9 mm, respectively. The values of exergy loss were found to be in the range of 5.90 and 14.39 MJ/kg water and decreased as the microwave power increased and slice thickness decreased. Effective diffusivity increased with decreasing moisture content and increasing microwave power and slice thickness. Average effective moisture diffusivity of kiwi slices changes between 1.47 × 10−9 and 39.29 × 10−9 m2/s within the given variables range. Activation energy (17.96–21.38 W/g) showed a significant dependence on the moisture content. Although the Midilli model showed the best fit, Page’s model was selected, since it had almost a similar performance but the model is simpler with two parameters instead of four.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

A, B, C, D:

Constant of Eq. (23)

Cp :

Heat capacity (J/kg K)

Dem :

Effective moisture diffusivity (m2/s)

Dr:

Drying rate (kg water/kg dry matter.min)

Ea :

Activation energy for moisture diffusivity (W/g)

Eloss :

Specific energy loss (J/kg water)

Esc :

Specific energy consumption (J/kg water)

EX:

Exergy (J)

ex:

Specific exergy (J/kg water)

EXabs :

Exergy absorbed (J)

EXin :

Exergy input (J)

exloss :

Specific exergy loss (J/kg water)

exexap :

Exergy of evaporation water (J/kg water)

EXref :

Exergy reflected (J)

EXtra :

Exergy transmitted (J)

F(M):

Function of moisture content

F0 :

Fourier number (dimensionless)

Fave :

Average value of F(M)

hm :

Mass transfer coefficient (m/s)

L:

Half thickness of slice (m)

m:

Mass (kg)

m0 :

Initial mass of sample (kg)

md :

Mass of dry sample (kg)

mwt :

Mass of water evaporated (kg)

M:

Moisture content (kg water/kg dry matter)

M0 :

Initial moisture content (kg water/kg dry matter)

Mcr :

Critical moisture content (begin falling rate period) (kg water/kg dry matter)

Me :

Equilibrium moisture content (kg water/kg dry matter)

MR:

Moisture ratio (dimensionless)

Mt :

Moisture content at any time (kg water/kg dry matter)

P:

Microwave power (W)

Pabs :

Microwave power absorbed (W)

Pin :

Microwave power emitted by the magnetron (W)

Pref :

Microwave power reflected (W)

Ptra :

Microwave power transmitted (W)

R2 :

Coefficient of determination (−)

t:

Time (s)

tcr :

Time of begin fall rate period (s)

T:

Temperature (K)

T0 :

Ambient temperature (K)

ηen :

Energy efficiency (%)

ηex :

Exergy efficiency (%)

λk :

Latent heat of sample (J/kg)

λwf :

Latent heat of free water (J/kg)

RMSE:

Root mean square error (−)

χ2 :

Chi-square (−)

ave:

Average

in:

Input

out:

Output

pd:

Dry product

wp:

Wet product

w:

Water evaporate

cr:

Critical point

References

  • Aboltins A (2013) Theoretical study of material drying coefficient. Engineering for Rural Development, Jelgava, 23.-24.05

  • Aghbashlo M, Kianmehr ,MH, Arabhosseini A (2009) Modeling of thin-layer drying of potato slices in length of continuous band dryer. Energy Convers Manag 50:1348–1355

    Article  CAS  Google Scholar 

  • Akpinar EK, Midilli A, Bicer A (2005) Energy and exergy of potato drying process via cyclone type dryer. Energy Convers Manag 46:2530–2552

  • Akpinar EK, Midilli A, Bicer Y (2006) The first and second law analyses of thermodynamic of pumpkin drying process. J Food Eng 72(4):320–331

    Article  Google Scholar 

  • Al-Harahsheh M, Al-Muhtaseb AH, Magee TRA (2009) Microwave drying kinetics of tomato pomace: effect of osmotic dehydration. Chem Eng Process 48:524–531

    Article  CAS  Google Scholar 

  • Alibas I (2007) Microwave, air and combined microwave–air-drying parameters of pumpkin slices. LWT– Food Sci Tech 40:1445–1451

    Article  CAS  Google Scholar 

  • Araszkiewicz M, Koziol A, Oskwarek A, Lupinski M (2004) Microwave drying of porous materials. Dry Technol 22(10):2331–2341

    Article  Google Scholar 

  • Arslan D, Ozcan MM (2010) Dehydration of red bell-pepper (Capsicum annuum L.): Change in drying behavior, colour and antioxidant content. Food Bioprod Process. doi:10.1016/j.fbp.2010.09.009

    Google Scholar 

  • ASRHAE Fundamentals Handbook (1985) ASHRAE. Atlanta, GA, American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (1985). Thermal Properties of Food

  • Bondaruk J, Markowski M, Blaszczak W (2007) Effect of drying conditions on the quality of vacuum-microwave dried potato cubes. J Food Eng 81:306–312

    Article  Google Scholar 

  • Bozkurt H (2009) The application, mathematical modelling and exergetic optimization of ohmic cooking in kofte production. M.sc. Thesis, Ege University, Izmir, p. 262 (in Turkish)

  • Bozkurt H, Icier F (2010) Exergetic performance analysis of ohmic cooking process. J Food Eng 100:688–695

    Article  Google Scholar 

  • Brooker DB, Bakker-Arkema FW, Hall CW (1992) Drying and storage of grains and oilseeds. The AVI Publishing Company, Westport

    Google Scholar 

  • Celma AR, Cuadros F, Lopez-Rodriguez F (2011) Convective drying characteristics of sludge from treatment plants in tomato processing industries. Food Bioprod Process. doi:10.1016/j.fbp.2011.04.003

    Google Scholar 

  • Corzo O, Bracho N, Vasquez A, Pereira A (2008) Energy and exergy analyses of thin layer drying of coroba slices. J Food Eng 86:151–161

    Article  Google Scholar 

  • Crank J (1975) Mathematics of diffusions, 2nd ed. Oxford University Press, London

  • Dadali G, Apar DK, Ozbek B (2007) Microwave drying kinetics of okra. Dry Technol 25:917–924

    Article  Google Scholar 

  • Dalvand MJ, Mohtasebi SS, Rafiee S (2013) Effect of needle number on drying rate of kiwi fruit in EHD drying process. Agric Sci 4:1–5

    Google Scholar 

  • Darvishi H, RezaieAsl A, Asghari A, Azadbakht M, Najafi G, Khodaie J (2013) Study of the drying kinetics of pepper. Journal of the Saudi Society of Agricultural Sciences. doi:10.1016/j.jssas.2013.03.002

    Google Scholar 

  • Darvishi H, Zarein M, Minaie S, Khafajeh H (2014a) Exergy and energy analyses, drying kinetics and mathematical modeling of white mulberry drying process. Int J Food Eng. doi:10.1515/ijfe-2013-0065

    Google Scholar 

  • Darvishi H, Koshtaghaza MH, Minaie S (2014b) Fluidized bed drying characteristics of soybeans. J Agric Sci Technol 16:1017–1031

    Google Scholar 

  • Dincer I (2002) On energetic, exergetic and environmental aspects of drying systems. Int J Energy Res 26:717–727

    Article  CAS  Google Scholar 

  • Dincer I, Sahin AZ (2004) A new model for thermodynamics analysis of a drying process. Int J Heat Mass Transf 47:645–652

    Article  CAS  Google Scholar 

  • Dissa AO, Desmoricux H, Savadoge PW, Segda BG, Koulidiati J (2010) Shrinkage, porosity and density behaviour during convective drying of spirulina. J Food Eng 97:410–418

  • Doymaz I (2008) Mathematical modeling of thin-layer drying of kiwifruit slices. J Food Process Preserv 33:145–160

    Article  Google Scholar 

  • Doymaz I (2011) Infrared drying of sweet potato (Ipomoea batatas L.) slices. J Food Sci Technol. doi:10.1007/s13197-010-0217-8

    Google Scholar 

  • Erbay Z, Icier F (2009) Energy and exergy analyses on drying of olive leaves (Olea europaea L.) in tray drier. J Food Process Eng 91:533–541

  • Erbay Z, Icier F (2010) A review of thin layer drying of foods: theory, modeling, and experimental results. Crit Rev Food Sci Nutr 50:441–464

    Article  Google Scholar 

  • Evin A (2011) Thin layer drying kinetics of gundelia tournefortii L. Food Bioprod Process. doi:10.1016/j.fbp.2011.07.002

    Google Scholar 

  • Falade KO, Olurin TO, Ike EA, Aworh OC (2007) Effect of pretreatment and temperature on air-drying of dioscorea alata and dioscorea rotundata slices. J Food Eng 80:1002–1010

    Article  Google Scholar 

  • Giri SK, Prasad S (2007) Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. J Food Eng 78:512–521

    Article  Google Scholar 

  • Haghi AK, Amanifard N (2008) Analysis of heat and mass transfer during microwave drying of food products. Braz J Chem Eng 25(3):495–501

    Article  Google Scholar 

  • Hall CW (1975) Drying farm crops. Edwards Bros. Inc., Mich

  • Hassini L, Azzouz S, Peczalski R, Belghith A (2007) Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. J Food Eng 79:47–56

    Article  Google Scholar 

  • Jain D, Pathare PB (2007) Study the drying kinetics of open sun drying of fish, study the drying kinetics of open sun drying of fish. J Food Eng 78:1315–1319

  • Jenas S, Das H (2007) Modelling of vacuum drying characteristics of coconut presscake. J Food Eng 79:92–99

    Article  Google Scholar 

  • Jindarat W, Rattanadecho P, Vongpradubchai S (2011) Analysis of energy consumption in microwave and convective drying process of multi-layered porous material inside a rectangular wave guide. Exp Thermal Fluid Sci. doi:10.1016/j.expthermflusci.2010.11.008

    Google Scholar 

  • Lee JH, Kim HJ (2009) Vacuum drying kinetics of Asian white radish (Raphanus sativus L.) slices. LWT Food Sci Technol 42:180–186

    Article  CAS  Google Scholar 

  • Liu Y, Zhao Y, Feng X (2008) Exergy analysis for a freeze-drying process. Appl Therm Eng 28:675–690

    Article  CAS  Google Scholar 

  • Markowski M, Białobrzewski I, Modrzewska A (2010) Kinetics of spouted-bed drying of barley: diffusivities for sphere and ellipsoid. J Food Eng 96:380–387

    Article  Google Scholar 

  • Maskan M (2001) Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. J Food Eng 48:177–182

    Article  Google Scholar 

  • McMinn WAM (2006) Thin-layer modeling of the convective, microwave, microwave-convective and microwave vacuum drying of lactose powder. J Food Eng 72:113–123

    Article  CAS  Google Scholar 

  • McMinn WAM, Khraisheh MAM, Magee TRA (2003) Modeling the mass transfer during convective, microwave and combined microwave-convective drying of solid slabs and cylinders. Food Res Int 36:977–983

    Article  Google Scholar 

  • Mohammadi A, Rafiee S, Keyhani A, Emam–Djomeh Z (2008) Moisture content modeling of sliced kiwifruit (cv. Hayward) during drying. Pak J Nutr 8(1):78–82

    Article  Google Scholar 

  • Mohammadi A, Rafiee S, Keyhani A, Emam–Djomeh Z (2009) Estimation of thin-layer drying characteristics of kiwifruit (cv. Hayward) with use of Page’s model. American-Eurasian J Agric Environ Sci 3(5):802–805

    Google Scholar 

  • Nguyen MH, Price WE (2007) Air-drying of banana: influence of experimental parameters, slab thickness, banana maturity and harvesting season. J Food Eng 79(1):200–207

    Article  Google Scholar 

  • Orsat V., Yang W,. Changrue W., Raghavan GSV. 2007. Microwave-assisted drying of biomaterials. Food Bioprod Process, 85 (C3): 255–263

    Article  Google Scholar 

  • Ozbek B, Dadali G (2007) Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. J Food Eng 83:541–549

    Article  Google Scholar 

  • Ozkan IA, Akbudak B, Akbudak N (2007) Microwave drying characteristics of spinach. J Food Eng 78:577–583

    Article  Google Scholar 

  • Pathare PB, Sharma GP (2006) Effective moisture diffusivity of onion slices undergoing infrared convective drying. Biosyst Eng 93(3):285–291

    Article  Google Scholar 

  • Poomjai S, Swasdisevi T, Nathakaranakule A, Soponronnarit S (2011) Drying kinetics using superheated steam and quality attributes of dried pork slices for different thickness, seasoning and fibers distribution. J Food Eng 104:105–113

    Article  Google Scholar 

  • Prommas A, Rattanadecho P, Cholaseuk D (2010) Energy and exergy analyses in drying process of porous media using hot air. Int Commun Heat Mass Transfer 37:372–378

    Article  Google Scholar 

  • Prommas R, Rattanadecho P, Jindarat W (2012) Energy and exergy analyses in drying process of non-hygroscopic porous packed bed using a combined multi-feed microwave-convective air and continuous belt system (CMCB). Int Commun Heat Mass Transfer 39:242–250

    Article  Google Scholar 

  • Rayaguru K, Routray W (2011) Microwave drying kinetics and quality characteristics of aromatic pandanus amaryllifolius leaves. Int Food Res J 18:1035–1042

    CAS  Google Scholar 

  • Rhim JW, Lee H (2011) Drying kinetics of whole and sliced shiitake mushrooms (Lentinus edodes). Food Sci Biotechnol 20(2):419–427

    Article  CAS  Google Scholar 

  • Sacilik K, Keskin R, Elicin AK (2006) Mathematical modeling of solar tunnel drying of thin layer organic tomato. J Food Eng 73:231–238

    Article  Google Scholar 

  • Sarimeseli A (2011) Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Convers Manag 52:1449–1453

    Article  Google Scholar 

  • Sharma GP, Prasad S (2004) Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. J Food Eng 65:609–617

    Article  Google Scholar 

  • Sharma GP, Prasad S (2006) Specific energy consumption in microwave drying of garlic cloves. Energy 31:1921–1926

    Article  CAS  Google Scholar 

  • Sharqawy M, John HLV, Syed MZ (2010) The thermo physical properties of seawater: a review of existing correlations and data. Desalin Water Treat 16:354–380

  • Shiby VK, Mishra HN (2007) Thin layer modelling for recirculatory convective air drying of curd (Indian yoghurt). Food Bioprod Process 85(3C):193–201

    Article  Google Scholar 

  • Simal S, Femenia A, Garau MC, Rosello C (2005) Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. J Food Eng 66:323–328

    Article  Google Scholar 

  • Singh NJ, Pandey RK (2011) Convective air drying characteristics of sweet potato cube (Ipomoea batatas L.). Food Bioprod Process. doi:10.1016/j.fbp.2011.06.006

    Google Scholar 

  • Souraki BA, Andres A, Mowala D (2009) Mathematical modeling of microwave assisted inert medium fluidized bed drying of cylindrical carrot samples. Chem Eng Process 48:296–305

    Article  CAS  Google Scholar 

  • Soysal A, Oztekin S, Eren O (2006) Microwave drying of parsley: modelling, kinetics, and energy aspects. Biosyst Eng 93(4):403–413

    Article  Google Scholar 

  • Thuwapanichayanan R, Prachayawarakorn S, Kunwisawa J, Soponronnarit S (2011) Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying. LWT Food Sci Technol 44:1502–1510

    Article  CAS  Google Scholar 

  • Wang J, Sheng K (2006) Far-infrared and microwave drying of peach. LWT Food Sci Technol 39:247–255

    Article  CAS  Google Scholar 

  • Wang Z, Sun J, Chen F, Liao X, Hu X (2007) Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. J Food Eng 80:536–544

    Article  Google Scholar 

  • Zielinska M, Markowski M (2010) Air drying characteristics and moisture diffusivity of carrots. Chem Eng Process 49:212–218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosain Darvishi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvishi, H., Zarein, M. & Farhudi, Z. Energetic and exergetic performance analysis and modeling of drying kinetics of kiwi slices. J Food Sci Technol 53, 2317–2333 (2016). https://doi.org/10.1007/s13197-016-2199-7

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-016-2199-7

Keywords

Profiles

  1. Mohammad Zarein