Journal of Food Science and Technology

, Volume 53, Issue 2, pp 1214–1221 | Cite as

Protective effect of black raspberry seed containing anthocyanins against oxidative damage to DNA, protein, and lipid

  • Mi-Hee Choi
  • Soon-Mi Shim
  • Gun-Hee Kim
Original Article


This study aimed to determine bioactive components and radical scavenging capacity of black raspberry seed extracts as byproducts obtaining during the juice (FSE) and wine (WSE) making process. Cyanidin-3-O-rutinoside was identified as a major anthocyanin and the total anthocyanin contents of fresh and wine seed were 78.24 and 41.61 mg/100 g of dry weight, respectively. The total phenolic and flavonoid contents of FSE and WSE were 2.31 g gallic acid equivalent (GAE) and 360.95 mg catechin equivalent (CE), and 2.44 g GAE and 379.54 mg CE per 100 g dry weight, respectively. The oxygen radical absorbance capacity (ORAC) values were 1041.9 μM TE/g for FSE and 1060.4 μM TE/g for WSE. Pretreatment of the FSE and WSE inhibited the generation of intracellular reactive oxygen species (ROS), DNA and protein damage induced by hydroxyl radicals, and Fe3+/ascorbic acid-induced lipid peroxidation in a dose dependent manner. WSE more effectively protected from oxidative damage than FSE. Results from the current study suggest that black raspberry seeds as byproducts from juice and wine processing could be potential sources for natural antioxidants.


Rubus coreanus Miq. Black raspberry seeds Juice and winemaking Byproducts Seed extract Antioxidants 



This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094017).


  1. Abid-Essefi S, Ouanes Z, Hasen W, Baudrimont I, Creppy EE, Bacha H (2004) Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicol in Vitro 18:467–474. doi: 10.1016/j.tiv.2003.12.011 CrossRefGoogle Scholar
  2. Arts IC, Hollman PC (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81:317–325Google Scholar
  3. Bahramikia S, Ardestani A, Yazdanparast R (2009) Protective effects of four Iranian medicinal plants against free radical mediated protein oxidation. Food Chem 115:37–42. doi: 10.1016/j.foodchem.2008.11.054 CrossRefGoogle Scholar
  4. Bushman BS, Phillips B, Isbell T, Ou B, Crane JM, Knapp SJ (2004) Chemical composition of caneberry (rubus spp.) seeds and oils and their antioxidant potential. J Agric Food Chem 52:7982–7987. doi: 10.1021/jf049149a CrossRefGoogle Scholar
  5. Du J, Gebicki JM (2004) Proteins are major initial cell targets of hydroxyl free radicals. Int J Biochem Cell Biol 36:2334–2343. doi: 10.1016/j.biocel.2004.05.012 CrossRefGoogle Scholar
  6. Ehlenfeldt MK, Prior RL (2001) Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J Agric Food Chem 49:2222–2227. doi: 10.1021/jf0013656 CrossRefGoogle Scholar
  7. Ha TJ, Lee MH, Park CH, Pae SB, Shim KB, Ko JM, Shin SO, Baek IY, Park KY (2010) Identification and characterization of anthocyanins in yard-long beans (Vigna unguiculata ssp. Sesquipedalis L.) by high performance liquid chromatography with diode array detection and electrospray ionization/mass spectrometry (HPLC-DAD-ESI/MS) analysis. J Agric Food Chem 58:2571–2576. doi: 10.1021/jf903883e CrossRefGoogle Scholar
  8. Han W, Hu W, Lee YM (2011) Anticancer activity of human colon cancer (HT-29) cell line from different fraction of zanthoxylum schnifolium fruits. Korean J Pharmacogn 42:282–287Google Scholar
  9. Hu W, Heo SI, Wang MH (2009a) Antioxidant and anti-inflammatory activity of kalopanax pictus leaf. J Korean Soc Appl Biol Chem 52:360–366. doi: 10.3839/jksabc.2009.064 CrossRefGoogle Scholar
  10. Hu W, Shen W, Wang MH (2009b) Free radical scavenging activity and protective ability of methanolic extract from duchesnea indica against protein oxidation and DNA damage. J Food Sci Nutr 14:277–282. doi: 10.3746/jfn.2009.14.4.277 CrossRefGoogle Scholar
  11. Je JY, Ahn CB, Oh MJ, Kang SY (2009) Antioxidant activity off a red seaweed polysiphonia morrowii extract. Food Sci Biotechnol 18:124–129Google Scholar
  12. Jiang L, Dai H, Sun Q, Geng C, Yang Y, Wu T, Zhang X, Zhong L (2011) Ambient particulate matter on DNA damage in HepG2 cells. Toxicol Ind Health 27:87–95. doi: 10.1177/0748233710387001 CrossRefGoogle Scholar
  13. Ju HK, Cho EJ, Jang MH, Lee YY, Hong SS, Park JH, Kwon SW (2009) Characterization of increased phenolic compounds from fermented bokbunja (rubus coreanus Miq.) and related antioxidant activity. J Pharm Biomed Anal 49:820–827. doi: 10.1016/j.jpba.2008.12.024 CrossRefGoogle Scholar
  14. Kim KH, Lee YA, Kim JS, Lee DI, Choi YW, Kim HH, Lee MW (2000) Antioxidative activity of tannins from rubus coreanum. Yakhak Hoeji 44:354–357Google Scholar
  15. Kim SI, Sim KH, Ju SY, Han YS (2009) A study of antioxidative and hypoglycemic activities of omija (schizandra chinensis baillon) extract under variable extract conditions. Korean J Food Nutri 22:41–47Google Scholar
  16. Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933. doi: 10.1016/S0031-9422(03)00438-2 CrossRefGoogle Scholar
  17. Ku CS, Mun SP (2008) Antioxidant activities of ethanol extracts from seeds in fresh bokbunja (rubus coreanus Miq.) and wine processing waste. Bioresour Technol 99:4503–4509. doi: 10.1016/j.biortech.2007.08.063 CrossRefGoogle Scholar
  18. Lee JH, Whang JB, Youn NR, Lee SY, Lee HJ, Kim YJ, Koh KH (2009) Antioxidant and oxygen radical scavenging capacities of the extracts of pear cactus, mulberry and Korean black raspberry fruit. J Food Sci Nutri 14:188–194. doi: 10.3746/jfn.2009.14.3.188 CrossRefGoogle Scholar
  19. Li C, Wang MH (2011) Antioxidant activity of peach blossom extracts. J Korean Soc Appl Biol Chem 54:46–53. doi: 10.3839/jksabc.2011.006 Google Scholar
  20. Liu M, Li XQ, Weber C, Lee CY, Brown J, Liu RH (2002) Antioxidant and antiproliferative activities of raspberries. J Agric Food Chem 50:2926–2930. doi: 10.1021/jf0111209 CrossRefGoogle Scholar
  21. Martinez GR, Loureiro AP, Marques SA, Miyamoto S, Yamaguchi LF, Onuki J (2003) Oxidative and alkylating damage in DNA. Mutat Res 544:115–127. doi: 10.1016/j.mrrev.2003.05.005 CrossRefGoogle Scholar
  22. Mayumi T, Schiller HJ, Bulkley GB (1993) Pharmaceutical intervention for the prevention of post-ischemic reperfusion injury. In: Poli G, Albano E, Dianzani MU (eds) Free radicals-from basic science to medicine, 1st edn. Birkhäuser Verlag, Switzerland, pp. 438–457CrossRefGoogle Scholar
  23. Ministry of Agricultural, Food and Rural Affairs (2013) 2012-Current Status of Fruits Processing. Accessed 15 April 2014
  24. Moure A, Cruz JM, Franco D, Domı’nguez JM, Sineiro J, Domı’nguez H, Nu’nez MJ (2001) Natural antioxidants from residual sources. Food Chem 72:145–171. doi: 10.1016/S0308-8146(00)00223-5 CrossRefGoogle Scholar
  25. Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4626. doi: 10.1021/jf010586o CrossRefGoogle Scholar
  26. Parry J, Su L, Moore J, Cheng Z, Luther M, Rao JN, Wang JY, Yu LL (2006) Chemical compositions, antioxidant capacities, and antiproliferative activities of selected fruit seed flours. J Agric Food Chem 54:3773–3778. doi: 10.1021/jf060325k CrossRefGoogle Scholar
  27. Peschel W, Sanchez-Rabaneda F, Diekmann W, Plescher A, Gartzıa I, Jimenez D, Lamuela-Raventos R, Buxaderas S, Codina C (2006) An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem 97:137–150. doi: 10.1016/j.foodchem.2005.03.033 CrossRefGoogle Scholar
  28. Puértolas E, Álvarez I, Raso J (2011) Changes in phenolic compounds of Aragón red wines during alcoholic fermentation. Food Sci Technol Int 17:77–86. doi: 10.1177/1082013210368555 CrossRefGoogle Scholar
  29. Shahidi F, Wanasundara PK (1992) Phenolic antioxidants. Crit Rev Food Sci Nutr 32:67–103. doi: 10.1080/10408399209527581 CrossRefGoogle Scholar
  30. Shim SM, Lim SY (2013) Texture properties and radical scavenging ability of porridge products based on beans, grains, and nuts. J Korean Soc Appl Biol Chem 56:77–82. doi: 10.1007/s13765-012-2219-x CrossRefGoogle Scholar
  31. Shin TY, Kim SH, Lee ES, Eom DO, Kim HM (2002) Action of rubus coreanus extract on systemic and local anaphylaxis. Phytother Res 16:508–513. doi: 10.1002/ptr.925 CrossRefGoogle Scholar
  32. Veerman EC, Nazmi K, Van’t Hof W, Bolscher JG, Den Hertog AL, Nieuw Amerongen AV (2004) Reactive oxygen species play no role in the candidacidal activity of the salivary antimicrobial peptide histatin 5. Biochem J 15:447–452CrossRefGoogle Scholar
  33. Wang LS, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269:281–290. doi: 10.1016/j.canlet.2008.05.020 CrossRefGoogle Scholar
  34. Yoshiyuki K, Michinori K, Tadato T, Shigeru A, Hiromichi O (1981) Studies on scutelariae Radix: IV. Effects on Lipid peroxidation in rat Liver Chem Pharm Bull 29:2610–2617. doi: 10.1248/cpb.29.2610 Google Scholar
  35. Zulueta A, Esteve MJ, Frigola A (2009) ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem 114:310–316. doi: 10.1016/j.foodchem.2008.09.033 CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2015

Authors and Affiliations

  1. 1.Department of Food and NutritionDuksung Women’s UniversityTobong-guSouth Korea
  2. 2.Department of Food Science and TechnologySejong UniversityKwangjin-guSouth Korea

Personalised recommendations