Abstract
The ancient grain is becoming enormously popular in modern food regimen in many countries; the higher proportion of α-linolenic acid makes chia the superb source of omega-3 fatty (about 65 % of the oil content). Omega-3 fatty acid has been associated with a large number of physiological functions in human body. Chia seed is a potential source of antioxidants with the presence of chlorogenic acid, caffeic acid, myricetin, quercetin, and kaempferol which are believed to have cardiac, hepatic protective effects, anti-ageing and anti-carcinogenic characteristics. It is also a great source of dietary fibre which is beneficial for the digestive system and controlling diabetes mellitus with higher concentration of beneficial unsaturated fatty acids, gluten free protein, vitamin, minerals and phenolic compounds. Therapeutic effects of chia in the control of diabetes, dyslipidaemia, hypertension, as anti-inflammatory, antioxidant, anti-blood clotting, laxative, antidepressant, antianxiety, analgesic, vision and immune improver is scientifically established.
Similar content being viewed by others
References
Adams JD, Wall M, Garcia C (2005) Salvia columbariae contains tanshinones. Evid. Based. Complement Alternat Med 2:107–110
Adams JD, Wang R, Yang J, Lien EJ (2006) Preclinical and clinical examinations of Salvia miltiorrhiza and its tanshinones in ischemic conditions. Chin Med 1:3
Ahmed M, Hamed R, Ali M, Hassan A, Babiker E (2006) Proximate composition, antinutritional factors and protein fractions of guar gum seeds as influenced by processing treatments. Pak J Nutr 5(5):340–345
Ali NM, Yeap SK, Ho WY, Beh BK, Tan SW, Tan SG (2012) The Promising Future of Chia Salvia hispanica L. J Biom Biotechnol. doi:10.1155/2012/171956
Alonso-Calderon A, Chávez-Bravo E, Rivera A, Montalvo-Paquini C, Arroyo-Tapia L (2013) ABCDLKF’K;GL’;LKG
Armstrong D (2004) Application for approval of whole chia (Salvia hispanica L.) seed and ground whole seed as novel food ingredient. Northern Ireland, R
Ayerza R, Coates W (2001) Chia seeds: new source of omega-3 fatty acids, natural antioxidants, and dietetic fiber. Southwest Center for Natural Products Research & Commercialization. Office of Arid Lands Studies, Tucson
Ayerza R, Coates W (2002) Dietary levels of chia: influence on hen weight, egg production and sensory quality, for two strains of hens. Br Poult Sci 43:283–290
Ayerza R, Coates W (2004) Composition of chia (Salvia hispanica) grown in six tropical and subtropical ecosystems of South America. Trop Sci 44(3):131–135
Ayerza R, Coates W (2005) Chia: Rediscovering an ancient crop of the Aztecs. University of Arizona, Tucson
Ayerza RJ, Coates W (2007) seeed yield oil content and fatty acid composition of three botanical sources of & ohgr: 3 fatty acid planted in the Yugas ecosystem of tropical Argentina. Trop Sci 47(4):183–187
Beltran-Orozco MC, Romero MR (2003) La Chia, Alimento Milenario, Departamento de Graduados e Investigacion en Alimentos. ENCB, IPN, Mexico
Borneo R, Aguirre A, León AE (2010) Chia (Salvia hispanica L) gel can be used as egg or oil replacer in cake formulations. J Am Diet Assoc 110:946–949
Brenna JT, Salem Jr N, Sinclair AJ, Cunnane SC (2009) α- Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukotrienes Essent. Fatty Acids 80:85–91
Bresson JL, Flynn A, Heinonen M, et al (2009) Opinion on the safety of Chia seeds (Salvia hispanica L.) and ground whole Chia seeds, as a food ingredient. J Eur Food Safety Authority 996:1–26
Cahill J (2003) Ethnobotany of chia, Salvia hispanica L. (Lamiaceae). Econ Bot 57:604–618
Campos MRS, Gonzalez FP, Guerrero LC, Ancona DB (2013) Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis. Inter J Food Sci Article ID 158482 8 pages. doi:10.1155/2013/158482
Chicco AG, D’Alessandro ME, Hein GJ, Oliva ME, Lombardo YB (2009) Dietary chia seed (Salvia hispanica L.) rich in alpha-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. Br J Nutr 101:41–50
Coates W, Ayerza R (1996) Production potential of chia in northwestern Argentina. Ind Crop Prod 5(3):229–233
Craig R (2004) Application for approval of whole chia (Salvia hispanica L.) seed and ground whole seed as novel food ingredient. Northern Ireland, Company Representative Mr D Amstrong. Craig & Sons, http://www. food.gov.uk/multimedia/pdfs/chiaapplication.pdf
Crosby G (2005) Lignans in food and nutrition. Food Technol 59:32–-36
De Tucci J (2006) Chia, la semilla que reduce el colesterol. Magazine Bayres Today 5.
EFSA (2005) Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a request from the Commission related to the safety of chia (Salvia hispanica L.) seed and ground whole chia seed as a novel food ingredient intended for use in bread. EFSA J 278:1–12.
EFSA (2009) Scientific Opinion of the Panel on Dietetic Products Nutrition and Allergies on a request from the European Commission on the safety of Chia seed (Salvia hispanica) and ground whole Chia seed’ as a food ingredient. EFSA J 996:1–2
Fernandez IR, Ayerza W, Coates SM, Vidueiros N, c, Pallaro AN (2006a) Nutritional characteristics of chia. Actualización en Nutrición. Tucson, Arizona 85706, USA. Office of Arid Lands Studies, The University of Arizona. 7: 23–25
Fernández I, Ayerza R, Coates W, Vidueiros SM, Slobodianik, Pallaro AN (2006b) Nutritional characteristics of chia. Actualización en Nutrición. Tucson, Arizona 85706, USA, Office of Arid Lands Studies, The University of Arizona. 7: 23–25.
Fernandez I,. Vidueiros SM, Ayerza R, Coates W, Pallaro A (2008) Impact of chia (Salvia hispanica L.) on the immune system: preliminary study Proceedings of the Nutrition Society, 67 (OCE), E12 doi:10.1017/S0029665108006216
Hansel B, Nicolle C, Lalanne F, Tondu F, Lassel T, Donazzolo Y, Ferrières J, Krempf M, Schlienger JL, Verges B, Chapman MJ, Brucket E (2007) Effect of low-fat, fermented milk enriched with plant sterols on serum lipid profile and oxidative stress inmoderate hypercholesterolemia. Am J Clinical Nutr 86(3):790–796
Hentry HS, Mittleman M, McCrohan PR (1990) Introduccion de la chia y la goma de tragacanto en los Estados Unidos. In: Janick OJ, Simon JE (eds) Avances en Cosechas Nuevas. Prensa de la Madera, Portland OH, pp. 252–256
Hernandez LM (2012) Mucilage from Chia Seeds (Salvia Hispanica): Microestructure, Physico-Chemical characterization and applications in Food Industry. PhD Thesis, Thesis submitted to the Office of Research and Graduate Studies in partial of the requirements for the Degree of Doctor in Engineering Sciences
Ingeborg AB, Katan MB, Zock PL (2004). The journal of Nutrition. Downloaded from Jnnutritionorg at Pakistan: ASNA Sponsored on June 15, 2015.
Ixtaina VY, Nolasco SM, Tomas MC (2008) Physical properties of chia (Salvia hispanica L.) seeds. Ind Crop Prod 28(3):286–293
Ixtaina VY, Martinez ML, Spotorno V, Mateo CM, Maestri DM, Diehl BWK, Nolasco SM, Tomas MC (2011) Characterization of chia seed oils obtained by pressing and solvent extraction. J Food Compos Anal 24:166–174
Jeong SM, Kim SY, Kim DR, Man KC, Ahn DU, Lee SC (2004) Effect of heat treatment on the antioxidant activity of extracts from citrus peals. J Agric Food Chem 52:3389–3393
Jeong SK, Park HJ, Park BD, Hwan Kim H (2010) Effectiveness of Topical Chia Seed Oil on Pruritus of End-stage Renal Disease (ESRD) Patients and Healthy Volunteers. Ann Dermatol 22(2):2010. doi:10.5021/ad.2010.22.2.143
Jiang RW, Lau KM, Hon PM, Mak TC, Woo KS, Fung KP (2005) Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Curr Med Chem 12:237–246
Kris-Etherton PM, hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD (2002) Bioactive compounds in foods: their role in prevention of cardiovascular disease and cancer. Am J Med 113:71–88
Leaf A, Kang JX (1998) Omega-3 fatty acids and cardiovascular disease. The re - turn of T-3 fatty acids into the food supply. I- Land-based animal food products and their health effects, edited by Simopoulos AP. Karger S, Basel AG, pp. 24–37
Lejeune MP, Kovacs EM, Westerterp-Plantenga MS (2005a) Additional protein intake limits weight regain after weight loss in humans. Br J Nutr 93:281–289
Lokuruka MNI (2007) Role of fatty acids of milk and dairy products in cardiovascular diseases: a review. AF J Food Agri Nutr and DEV 7(1). http://www.bioline.org.br
Manzella D, Paolisso G (2005) Cardiac autonomic activity and Type II diabetes mellitus. Clin Sci 108:93--97
Mohd AN, Yeap SK, Ho WY (2012) The promising future of Chia. Salvia Hispanica L J Biomed Biotechnol 171956(9 pages). doi:10.1155/2012/171956
Munoz LA, Aguilera JM, Rodriguez-Turienzo L, Cobos A, Diaz O (2012a) Characterization and microstructure of films made from mucilage of salvia hispanica and whey protein concentrate. J Food Eng 111:511–518
Munoz LA, Cobos A, Diaz O, Aguilera JM (2012b) Chia seeds: microstructure, mucilage extraction and hydration. J Food Eng 108:216–224
Nadeem M, Abdullah M, Mahumd A, Hussain I, Inayat S (2013) Stabilization of butter oil with modified fatty acid profile by using Moringa oleifera extract as antioxidant. J Agric Sci Technol 15:919–928
Nadeem M, Situ C, Mahmud A, Khalique A, Imran M, Rahman F, Khan S (2014) Antioxidant activity of sesame (Sesamum indicum) cake extract for the stabilization of olein based butter. J Am Oil Chem Soc. doi:10.1007/s11746-014-2432-3
Nadeem M, Azeem W, Ahmad S (2015a) Stabilization of winterized cottonseed oil with chia (Salvia hispanica L.) seed extract. J Food Sci Technol. doi:10.1007/s13197-015-18232
Nadeem M, Ajmal M, Rahman F, Ayaz M (2015b) Analytical characterization of butter oil enriched with omega-3 and 6 fatty acids through chia (Salvia hispanica L.) seed oil. Pak J of Anal Envi Chem (Accepted)
Nieman DC, Cayea EJ, Austin MD, Henson DA, McAnulty SR, Jin F (2009) Chia seed does not promote weight loss or alter disease risk factors in overweight adults. Nutr Res 29(6):414–418
Pawlosky R, Hibbeln J, Lin Y, Salem N (2003) N-3 fatty acid metabolism in women. Br J Nutr 90:993–994
Peiretti PG, Gai F (2009) Fatty acid and nutritive quality of chia (Salvia hispanica L.) seeds and plant during growth. Anim Feed Sci Technol 148(2–4):267–275
Phillips GO, Wiliams PA (2000) Introduction to food hydrocolloids. In: Go P, Williams PA (eds) Handbook of Hydrocolloids. Woodhead Publishing Limited, Cambridge England
Rahman Ullah., Nadeem M, Ahmad S, Azeem MW, Tayyab M (2015) Fractionation of Chia Oil to Enhance Omega 3 & 6 Fatty Acids: Oxidative Stability of Fractions. Food Sci Biotech (Accepted)
Reyes-Caudillo E, Tecante A, Valdivia-Lopez MA (2008) Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem 107(2):656–663
Rodea-González DA, Cruz-Olivares J, Roman-Guerrero A, Rodriguez-Huezo ME, Vernon-Carter EJ, Pérez-Alonso C (2012) Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. J Food Eng 111:102–109
Sandoval-Oliveros MR, Paredes-Lopez O (2013) Isolation and characterization of proteins from chia seeds (Salvia hispanica L.). J Agric Food Chem 61:193−201. doi:10.1021/jf3034978
Segura-Campos MR, Salazar-Vega IM, Chel-Guerrero LA, Betancur-Ancona DA (2013) Biological potential of chia (Salvia hispanica L.) protein hydrolysates and their incorporation into functional foods. LWT Food Sci Technol 50:723–731
Serpen A, Gökmen V, Fogliano V (2012b2012a) Total antioxidant capacities of raw and cooked meats. Meat Sci. 90: 60–65. PMid: 21684086. doi:10.1016/j.meatsci.2011-05-027 http://dx.doi.org/10.1016/j.meatsci.2011.05.027
Shahidi F, Naczk M (1995) Phenolic compounds in grains. In: In food phenolics. Source, chemistry effects, applications. Technomic Publishing Company Inc, Lancaster PA, pp. 3–39
Shewry PR, Casey R (eds) (2003) Seed proteins. Kluwer Academic Publishers, Dordrecht
Skov AR, Toubro S, Ronn B, Holm L, Astrup A (1999) Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity. Int J Obes Relat Metab Disord 23:528–536
Tepe B, Sokmen M, Akpulat AH, Sokmen A (2006) Screening of the antioxidant activity of six salvia species from Turkey. Food Chem 95:200–204
The Chia Company (2009) Request for scientific evaluation of substantial equivalence application for the approval of chia seeds (Salvia Hispanica L.) from The Chia Company for use in bread. Food Standards Agency: London, UK.
Ting IP, Brown JH, Naqvi HH, Estilai A, Kummamoto J, Matsumura M (1990) Chia: a potential oil crop for arid zones. In: Naqvi HH, Estilai A, Ting IP (eds) New IND CROP PROD. University of Arizona, Tucson, AZ, pp. 197–200
Uribe JAR, Perez JIN, Kauil HC, Rubio GR, Alcocer CG (2011) Extraction of oil from chia seeds with supercritical CO2. J Supercrit Fluids 56(2):174–178
USDA (2000) Dietary guidelines for Americans. 5th edn. Home and Garden Bull. No. 232, 11
USDA (2011) National Nutrient Database for Standard Reference, Release 24. Nutrient Data Laboratory Home Page. US. Department of Agriculture, Agricultural Research Service
Vertommen J, Van de Sompel AM, Loenders M, Van der Velpen C, De Leeuw I. (2005) Efficacy and Safety of 1 Month Supplementation of SALBA (Salvia Hispanica Alba) Grain to Diet of Normal Adults on Body Parameters, Blood Pressure, Serum Lipids, Minerals Status and Haematological Parameters. Results of a Pilot Study. The 23th International Symposium on Diabetes and Nutiriton of the European Association for the Study of Diabetes
Vuksan V, Whitman D, Sievenpiper J, Jenkins A, Rogovik A, Bazinet R, Vidgen E, Hanna A (2007) Supplementation of conventional therapy with the novel grain Salba (Salvia hispanica L.) improves major and emerging cardiovascular risk factors in type 2 diabetes. Diabetes Care 30:2804–2810
Vuksan V, Jenkins AL, Dias AG, Lee AS, Jovanovski E, Rogovik AL, Hanna A (2010) Reduction in postprandial glucose excursion and prolongation of satiety: possible explanation of the long-term effects of whole grain Salba (Salvia Hispanica L.). Eur J Clin Nutr 64(4):436–438
Wojcikowski K, Johnson DW, Gobe G (2006) Herbs or natural substances as complementary therapies for chronic kidney disease: ideas for future studies. J Lab Clin Med 147:160–166
Acknowledgments
The authors are highly obliged to all the scientists, researchers and contributors whose work has been include in this review. Financial assistance for this study was provided by Higher Education Commission of Pakistan.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ullah, R., Nadeem, M., Khalique, A. et al. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. J Food Sci Technol 53, 1750–1758 (2016). https://doi.org/10.1007/s13197-015-1967-0
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13197-015-1967-0