Third generation snacks manufactured from orange by-products: physicochemical and nutritional characterization

Abstract

A mixture of orange vesicle flour, commercial nixtamalized corn flour and potato starch was extruded using a Brabender Laboratory single screw extruder (2:1 L/D). The resulting pellets were expanded by microwaves. Expansion index, bulk density, penetration force, carotenoid content, and dietary fiber were measured for this third-generation snack and optimum production conditions were estimated. Response surface methodology was applied using a central composite rotatable experimental design to evaluate the effect of moisture content and extrusion temperature. Temperature mainly affected the expansion index, bulk density and penetration force, while carotenoids content was affected by moisture content. Surface overlap was used to identify optimum processing conditions: temperature: 128–130 °C; moisture content: 22–24 %. Insoluble dietary fiber decreased and soluble dietary fiber increased after extrusion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aguilar-Palazuelos E, Zazueta-Morales JJ, Martínez-Bustos F (2006) Preparation of high-quality protein-based extruded pellets expanded by microwave oven. Cereal Chem 83:363–369

    CAS  Article  Google Scholar 

  2. Alvis A, Vélez CA, Villada HS, Rada-Mendoza M (2008) Análisis físico-químico y morfológico de almidones de ñame, yuca y papa y determinación de la viscosidad de las pastas. Inf Tecnol 19:9–28

    Google Scholar 

  3. AOAC (1999) Official methods of analysis, 15th edn. Association of Official Analytical Chemists Inc, Arlington

    Google Scholar 

  4. Atienzo-Lazos M, Delgado E, Ochoa-Martínez A, Aguilar-Palazuelos E, Martínez BF, Ramirez-Wong B, Gallegos-Infante A, Medrano-Roldan H, Solis-Soto A (2011) Effect of moisture and temperature on the functional properties of composite flour extrudates from beans (Phaseolus vulgaris) and nixtamalized corn (Zea mays). J Anim Prod Adv 1:9–20

    Google Scholar 

  5. Camacho-Hernandez IL, Zazueta-Morales JJ, Gallegos-Infante JA, Aguilar-Palazuelos E, Rocha-Guzmán NE, Navarro-Cortez RO, Jacobo-Valenzuela N, Gómez-Aldapa CA (2014) Effect of extrusion conditions on physicochemical characteristics and anthocyanin content of blue corn third-generation snacks. CyTA J Food 12:320–330

    CAS  Article  Google Scholar 

  6. Charlton SJ, Ewing WN (2007) The vitamin directory. Context Products, Ltd, England

    Google Scholar 

  7. Chen KHJ, Dogan E, Rizvi SSH (2002) Supercritical fluid extrusion of masa-based snack chips. Cereal Foods World 47:44–51

    Google Scholar 

  8. De Moraes-Crizel T, Jablonski A, De Oliveira-Rios A, Rech R, Flôres SH (2013) Dietary fiber from orange byproducts as a potential fat replacer. LWT-Food Sci Technol 53:9–14

    Article  Google Scholar 

  9. Delgado-Nieblas C, Aguilar-Palazuelos E, Gallegos-Infante A, Rocha-Guzmán N, Zazueta-Morales J, Caro-Corrales J (2012) Characterization and optimization of extrusion cooking for the manufacture of third-generation snacks with winter squash (Cucurbita moschata D.). Flour Cereal Chem 89:65–72

    CAS  Article  Google Scholar 

  10. Ding QB, Ainsworth P, Plunkett A, Tucker G, Marson H (2006) The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. J Food Eng 73:142–148

    Article  Google Scholar 

  11. Ferreira RE, Chag YK, Steel CJ (2011) Influence of wheat bran addition and of thermoplastic extrusion process parameters on physical properties of corn-based expanded extruded snacks. Alim Nutr Araraquara 22:507–520

    Google Scholar 

  12. Flores-Farías R, Martínez-Bustos F, Salinas-Moreno Y, Ríos E (2002) Caracterización de harinas comerciales de maíz nixtamalizado. Rev Agrociencia 36:557–567

    Google Scholar 

  13. Grigelmo NM, Martin-Belloso O (1998) Characterization of dietary fiber from orange juice extraction. Food Res Int 31:355–361

    Article  Google Scholar 

  14. Gujska E, Khan K (1991) Effect of temperature on properties of extrudates from high starch fractions of navy, pinto bean meal (Phaseolus vulgaris L). J Food Sci 55:466–469

    Article  Google Scholar 

  15. Hernández-Díaz JR, Quintero-Ramos A, Barnard J, Balandran-Quintana RR (2007) Functional properties of extrudates prepared with blends of wheat flour/pinto bean meal with added wheat bran. Food Sci Technol Int 13:301–308

    Article  Google Scholar 

  16. Kebede L, Worku S, Bultosa G, Yetneberek S (2010) Effect of extrusion operating conditions on the physical and sensory properties of tef (Eragrostis tef [Zucc.] Trotter) flour extrudates. Ethiop J Appl Sci Technol 1:27–38

    Google Scholar 

  17. Larrea CMA, Martínez-Bustos F, Yoon KC (2010) The effect of extruded orange pulp on enzymatic hydrolysis of starch and glucose retardation index. Food Bioprocess Technol 3:684–692

    Article  Google Scholar 

  18. Larrea MA, Chang YK, Martinez-Bustos F (2005) Effect of some operational extrusion parameters on the constituents of orange pulp. Food Chem 89:301–308

    CAS  Article  Google Scholar 

  19. Lee TC, Chen T, Alid G, Chichester CO (1978) Stability of vitamin A and pro-vitamin A (carotenoids) in extrusion cooking processing. AICHE Symp Ser 74:172–192

    Google Scholar 

  20. Leivas CL, Da Costa FJOG, De Almeida RR, De Freitas RJS, Stertz SC, Schnitzler E (2013) Structural, physico-chemical, thermal and pasting properties of potato (Solanum tuberosum L.) flour. J Therm Anal Calorim 111:2211–2216

    CAS  Article  Google Scholar 

  21. Martínez OL, Román MO, Gutiérrez EL, Medina GB, Cadavid M, Flórez OA (2008) Desarrollo y evaluación de un postre lácteo con fibra de naranja. Rev Fac Quím Farmac 15:219–225

    Google Scholar 

  22. Meng X, Threinen D, Hansen M, Driedger D (2010) Effects of extrusion conditions on system parameters and physical properties of a chickpea flour-based snack. Food Res Int 43:650–658

    CAS  Article  Google Scholar 

  23. Moraru CI, Kokini JL (2003) Nucleation and expansion during extrusion and microwave heating of cereal foods. Compr Rev Food Sci Food Saf 2:120–138

    CAS  Article  Google Scholar 

  24. Moreno-Álvarez MJ, Belén DR, García D, Mendoza L (2005) Evaluación del contenido de carotenoides totales en cáscaras de algunas variedades de naranjas venezolanas. Rev Fac Agro 23:301–309

    Google Scholar 

  25. Pérez-Navarrete C, Betancur-Ancona D, Casotto M, Carmona A, Tovar J (2007) Efecto de la extrusión sobre la biodisponibilidad de proteína y almidón en mezclas de harina de maíz y frijol lima. Arch Latinoam Nutr 57:145–155

    Google Scholar 

  26. Rocha-Guzmán NE, Gallegos-Infante JA, González-Laredo RF, Castillo-Antonio PA, Delgado-Lincoln E, Ibarra-Peréz F (2006) Functional properties of three common bean (Phaseolus vulgaris) cultivars stored under accelerated conditions followed by extrusion. LWU Technol 39:6–10

    Google Scholar 

  27. Yağci S, Göğüş F (2009) Development of extruded snack from food by‐products: a response surface analysis. J Food Process Eng 32:565–586

    Article  Google Scholar 

  28. Yu L, Hosahalli S, Ramaswamy BJ (2012) Twin-screw extrusion of corn flour and soy protein isolate (SPI) blends: a response surface analysis. Food Bioprocess Technol 5:485–497

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ernesto Aguilar-Palazuelos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tovar-Jiménez, X., Caro-Corrales, J., Gómez-Aldapa, C.A. et al. Third generation snacks manufactured from orange by-products: physicochemical and nutritional characterization. J Food Sci Technol 52, 6607–6614 (2015). https://doi.org/10.1007/s13197-015-1726-2

Download citation

Keywords

  • Third generation snacks
  • Extrusion
  • Orange by-products
  • Carotenoids
  • Dietary fiber