Skip to main content

Advertisement

Log in

The use of chitosan, lysozyme, and the nano-silver as antimicrobial ingredients of edible protective hydrosols applied into the surface of meat

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to design and produce biologically active edible hydrosols, which, when applied to the surface of food products, will protect them from oxidative changes, spoilage and growth of microorganisms. Verification of testing hypothesis and the degree of aim realization were performed by assessing a DPPH radical scavenging activity and microbial reduction of experimental hydrosols on the basis of hydroxypropylmethylcellulose (HPMC), chitosan (CH), lysozyme (L) and nanocolloidal silver (NAg). Antimicrobial activity of different concentrations of CH, L and NAg hydrosols against Gram (+) bacteria: Bacilllus cereus and Micrococcus flavus and Gram (−) bacteria: Escherichia coli and Pseudomonas fluorescens, which exist more often in food, were analyzed using serial dilution test. Total number of microorganisms was determined on meat sample covered by tested sols. Hydrosols containing chitosan and other bioactive substances caused death of each tested microorganism. Lack of chitosan in hydrosols is reflected in a slight inhibition of M. flavus, E. coli and P. fluorescens. Simultaneous influence of CH, L and NAg addition and storage time on total number of bacteria in meat samples with hydrosols was showed. The addition of lysozyme to sols composition significantly increases antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Branen JK, Davidson PM (2004) Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. Int J Food Microbiol 90:63–74

    Article  CAS  Google Scholar 

  • Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: review. Crit Rev Food Sci Nutr 44:223–237

    Article  CAS  Google Scholar 

  • Chen JC, Yeh JY, Chen PC, Hsu CK (2007) Phenolic Content and DPPH Radical Scavenging Activity of Yam-containing Surimi Gels Influenced by Salt and Heating. Asian J Health Inf Sci 2:1–11

    Google Scholar 

  • Chen M, Yeh GH, Chiang B (1996) Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative. J Food Process Preserv 20:379–390

    Article  CAS  Google Scholar 

  • Cho HR, Chang DS, Lee WD, Jeong ET, Lee EW (1998) Utilization of chitosan hydrolysate as a natural food preservative for fish meat paste products. Korean J Food Sci Technol 30:817–822

    Google Scholar 

  • Clement JL, Jarrett PS (1994) Antibacterial silver. Metal-Based Drugs 5–6:467–482

    Article  Google Scholar 

  • Coma V (2010) Polysaccharide-based biomaterials with antimicrobial and antioxidant properties. Polimeros 20:1–12

    Google Scholar 

  • Cuero RG (1999) Antimicrobial action of exogenous chitosan. EXS 87:315–33

    CAS  Google Scholar 

  • Dai T, Tanaka M, Huang YY, Hamblin MR (2011) Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti-Infect Ther 9:857–879. doi:10.1586/eri.11.59

    Article  CAS  Google Scholar 

  • Darmadji P, Izumimoto M (1994) Effect of chitosan in meat preservation. Meat Sci 38:243–254

    Article  CAS  Google Scholar 

  • Duan J, Kim K, Daeschel MA, Zhao Y (2008) Storability of antimicrobial chitosan-lysozyme composite coating and film-forming solutions. J Food Sci 73:321–329

    Article  Google Scholar 

  • Duran N, Marcarto PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  CAS  Google Scholar 

  • Galeano B, Korff E, Nicholson WL (2003) Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc- containing zeolite formulation. Appl Environ Microbiol 69:4329–4331

    Article  CAS  Google Scholar 

  • Garcia M, Diaz R, Puerta F, Beldarrain T, Gonzales J, Gonzales I (2010) Influence of chitosan addition on quality properties of vacuum-packaged pork sausages. Cienc Tecnol Aliment 30:560–564

    Article  Google Scholar 

  • Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71:235–244

    Article  CAS  Google Scholar 

  • Huang RH, Rajapakse N, Kim SK (2006) Structural factors affecting radical scavenging activity of chitooligosaccharides (COS) and its derivatives. Carbohydr Polym 63:122–129

    Article  CAS  Google Scholar 

  • Jarmila V, Vavrikova E (2011) Chitosan Derivatives with Antimicrobial, Antitumour and Antioxidant Activities—a Review. Curr Pharm Des 17:3596–3607

    Article  Google Scholar 

  • Je JY, Park PJ, Kim SK (2004) Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy. Food Chem Toxicol 42:381–387

    Article  CAS  Google Scholar 

  • Jeon YJ, Kim SK (2002) Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J Microbiol Biotechnol 12:503–507

    CAS  Google Scholar 

  • Jeon YJ, Park PJ, Kim SK (2001) Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr Polym 44:71–76

    Article  CAS  Google Scholar 

  • Kim KW, Thomas RL (2007) Antioxidative activity of chitosans with varying molecular weights. Food Chem 101:308–313

    Article  CAS  Google Scholar 

  • Lee CH, An DS, Park HF, Lee DS (2003) Wide-spectrum antimicrobial packaging materials incorporating nisin and chitosan in the coating. Packag Technol Sci 16:99–106

    Article  CAS  Google Scholar 

  • Leistner L, Gould GW (2002) Hurdle Technologies Combination Treatments for Food Stability, Safety and Quality. Springer, New York

    Google Scholar 

  • Leśnierowski G, Kijowski J (2007) Lysozyme. In: Huopalhti R, Lopez-Fandino R, Anton M, Schade R (eds) Bioactive egg compounds. Springer, Berlin

    Google Scholar 

  • Lian ZX, Ma ZS, Wei J, Liu H (2012) Preparation and characterization of immobilized lysozyme and evaluation of its application in edible coatings. Process Biochem 47:201–208

    Article  CAS  Google Scholar 

  • Lim S, Hudson SM (2003) Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromol Sci 43:223–269

    Article  Google Scholar 

  • Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29

    Article  CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Chen CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924

    Article  CAS  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res 12:1531–1551. doi:10.1007/s11051-010-9900-y

    Article  CAS  Google Scholar 

  • Masschalck B, Michiels CW (2003) Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit Rev Microbiol 29:191–214

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Min S, Harris LJ, Han JH, Krochta JM (2005) Listeria monocytogenes inhibition by whey protein films and coatings incorporating lysozyme. J Food Prot 68:2317–2325

    CAS  Google Scholar 

  • Moreira MR, Roura SI, Ponce A (2011) Effectiveness of chitosan edible coatings to improve microbiological and sensory quality of fresh cut broccoli. LWT Food Sci Technol 44:2335–2341

    Article  CAS  Google Scholar 

  • Nakamura S, Kato A, Kobayashi K (1992) Bifunctional lysozyme-galactomannan conjugate having excellent emulsifying properties and bactericidal effect. J Agric Food Chem 40:735–739

    Article  CAS  Google Scholar 

  • No HK, Na YP, Lee SH, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65–72

    Article  CAS  Google Scholar 

  • Padgett T, Han IY, Dawson PL (1998) Incorporation of food-grade antimicrobial compounds into biodegradable packaging films. J Food Prot 61:1330–1335

    CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  • Park SI, Daeschel MA, Zhao Y (2004) Functional properties of antimicrobial lysozyme-chitosan composite films. J Food Sci 8:215–221

    Article  Google Scholar 

  • Proctor VA, Cunningham FE (1988) The chemistry of lysozyme and its use as a food preservative and a pharmaceutical. CRC Crit Rev Food Sci Nutr 26:359–395

    Article  CAS  Google Scholar 

  • Qin CQ, Du YM, Xiao L, Zhan L, Gao XH (2002) Enzymic preparation of water-soluble chitosan and their antitumor activity. Int J Biol Macromol 31:111–117

    Article  CAS  Google Scholar 

  • Rao MS, Chander R, Sharma A (2008) Synergistic effect of chitooligosaccharides and lysozyme for meat preservation. Food Sci Technol 41:1995–2001

    CAS  Google Scholar 

  • Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    Article  CAS  Google Scholar 

  • Ribeiro MP, Morgado PI, Moguel SP, Coutinho P, Correia IJ (2013) Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Mater Sci Eng C 33:2958–2966

    Article  CAS  Google Scholar 

  • Roller S, Sagoo S, Board R, O’Mahony T, Caplice E, Fitzgerald G, Fogden M, Owen M, Fletcher H (2002) Novel combination of chitosan, carnocin and sulphite for the preservation of chilled pork sausages. Meat Sci 62:165–77

    Article  CAS  Google Scholar 

  • Rosca C, Chitanu GC, Popa MI (2005) Interaction of chitosan with natural or synthetic anionic polyelectrolytes. The chitosan-carcoxymethylcellulose complex. Carbohydr Polym 62:34–41

    Article  Google Scholar 

  • Sagoo S, Board R, Roller S (2002) Chitosan inhibits growth of spoilage microorganisms in chilled pork products. Food Microbiol 19:175–182

    Article  CAS  Google Scholar 

  • Shepherd R, Reader S, Falshaw A (1997) Chitosan functional properties. Glycoconj J 14:535–542

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Song Y, Babiker EE, Usui M, Saito A, Kato A (2002) Emulsifying properties and bactericidal action of chitosan-lysozyme conjugates. Food Res Int 35:459–466

    Article  CAS  Google Scholar 

  • Sun T, Yao Q, Zhou D, Mao F (2008) Antioxidant activity of N-carboxymethyl chitosan oligosaccharides. Bioorg Med Chem Lett 18:5774–5776

    Article  CAS  Google Scholar 

  • Suzuki S (1996) Studies on biological effects of water soluble lower homologous oligosaccharides of chitin and chitosan. Fragrance J 15:61–68

    Google Scholar 

  • Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B 69:164–168

    Article  CAS  Google Scholar 

  • Tankhiwale R, Bajpai SK (2010) Silver-nanoparticle-loaded chitosan lactate films with fair antibacterial properties. J Appl Polym Sci 115:1894–1900

    Article  CAS  Google Scholar 

  • Terbojevich M, Muzzarelli RAA (2000) Chitosan. In: Phillips GO, Williams PA (eds) Handbook of Hydrocolloids. CRC Press, Cambridge, pp 367–376

    Google Scholar 

  • Tsai GJ, Su WH, Chen HC, Pan CL (2002) Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fish Sci 68:170–177

    Article  CAS  Google Scholar 

  • Valenta C, Schwarz EG, Bernkop-Schnürch A (1998) Lysozyme caffeic acid conjugates: possible novel preservatives for dermatics. Int J Pharm 174:125–132

    Article  CAS  Google Scholar 

  • Wu YB, Yu SH, Mi FL, Wu CW, Shyu SS, Peng CK, Chao AC (2004) Preparation and characterization on mechanical and antibacterial properties of chitsosan/cellulose blends. Carbohydr Polym 57:435–440

    Article  CAS  Google Scholar 

  • Youn SK, Kim YJ, Ahn DH (2001) Antioxidative effects of chitosan in meat sausage. J Korean Soc Food Sci Nutr 30:477–481

    CAS  Google Scholar 

  • Zheng LY, Zhu JF (2003) Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym 54:527–530

    Article  CAS  Google Scholar 

  • Zimoch-Korzycka A, Gardrat C, Castellan A, Jarmoluk A, Coma V (2014) The use of lysozyme to prepare biologically active chito-oligomers. Polimeros (approved August 19, 2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Zimoch-Korzycka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimoch-Korzycka, A., Jarmoluk, A. The use of chitosan, lysozyme, and the nano-silver as antimicrobial ingredients of edible protective hydrosols applied into the surface of meat. J Food Sci Technol 52, 5996–6002 (2015). https://doi.org/10.1007/s13197-014-1645-7

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1645-7

Keywords