Journal of Food Science and Technology

, Volume 52, Issue 3, pp 1516–1524 | Cite as

Influence of the addition of natural antioxidant from mate leaves (Ilex paraguariensis St. Hill) on the chemical, microbiological and sensory characteristics of different formulations of Prato cheese

  • Andréia M. Faion
  • Patrícia Beal
  • Franciele T. Ril
  • Alexandre J. Cichoski
  • Rogério L. Cansian
  • Alice T. Valduga
  • Débora de Oliveira
  • Eunice Valduga
Original Article


The objective of this work is to evaluate the effects of the addition of dried extract from mate leaves and mesophilic cultures (Lactococcus lactis ssp. lactis and cremoris) on the chemical, microbiological and sensory characteristics of Prato cheese. The Prato cheese presented high moisture contents (49 to 53 %) and mean pH values of 5.15 for all tested formulations. The addition of mate leaves extract in the product did not influence the growth of the microbial cultures. During the maturation time, all formulations with the addition of adjunct cultures and mate leaves extract presented lower levels of lipid and protein oxidation compared to the control, proving the antioxidant effect of mate extract. The formulation of Prato cheese added of 0.1 wt.% of extract presented acceptability of about 80 % after 30 days of maturation. The sensory evaluation showed that only the formulation added by adjunct culture and 0.2 wt.% of mate extract presented lower values for the attributes global acceptance, texture and flavor, compared to the control. The formulations added of mate leaves extract presented residual bitter flavor after 45 days of storage.


Prato cheese Natural antioxidant Ilex paraguariensis Mesophilic culture 


  1. Association of Official Analytical Chemists (AOAC) (2000) In: Horwitz W (ed) Official methods of analysis of the Association of the Analytical Chemists. AOAC, WashingtonGoogle Scholar
  2. Banks JM (2004) The technology of low-fat cheese manufacture. Int J Dairy Technol 57:199–207CrossRefGoogle Scholar
  3. Bastos DHM, Oliveira DM, Matsumoto RLT, Carvalho PO, Ribeiro ML (2007a) Yerba maté: pharmacological properties, research and biotechnology. Med Aromatic Plant Sci Biotechnol 1:7–46Google Scholar
  4. Bastos DHM, Saldanha LA, Catharino RR, Sawaya ACHF, Cunha IBS, Carvalho PO, Eberlin MN (2007b) Phenolic antioxidants identified by ESI-MS from Yerba Mate (Ilex paraguariensis) and green tea (Camelia sinensis) extracts. Molecules 12:423–432CrossRefGoogle Scholar
  5. Biström M, Nordström K (2002) Identification of key success factors of functional dairy foods product development. Trends Food Sci Technol 13:372–379CrossRefGoogle Scholar
  6. Brasil (1996) Portaria n º 146. Regulamento técnico de identidade e qualidade de queijos. Diário Oficial da União, Brasília, 11 março, 1996. Seção 1., Access in 23rd January 2011
  7. Campos RML, Hierro E, Ordonez JA, Bertol TM, Terra NN, De la Hoz L (2007) Fatty acid and volatile compounds from salami manufactured with yerba mate (Ilex paraguariensis) extract and pork back fat and meat from pigs fed on diets with partial replacement of maize with rice bran. Food Chem 103:1159–1167CrossRefGoogle Scholar
  8. Chen H, Zhang Y, Lu X, Qu Z (2012) Comparative studies on the physicochemical and antioxidant properties of different tea extracts. J Food Sci Technol 49(3):356–361CrossRefGoogle Scholar
  9. Costa RGB, Lobato V, Abreu LR (2005) Aspectos físico-químicos do queijo prato submetido a salga em salmoura estática e com agitação. Rev Inst Laticínios Candido Tostes 59:3–15 (in portuguese)Google Scholar
  10. Decker EA (1998) Strategies for manipulating the prooxidative/antioxidative balance of food to maximize oxidative stability. Trends Food Sci Technol 9:241–248CrossRefGoogle Scholar
  11. Efing LMAC, Caliari TK, Nakashima T, Freitas RJSF (2009) Caracterização química e capacidade antioxidante da erva-mate (Ilex paraguariensis St. Hil.). Bol Cent Pesqui Process Aliment 27:241–246 (in portuguese)Google Scholar
  12. Estévez M, Ramírez R, Ventanas S, Cava R (2007) Sage and rosemary essential oils versus BHT for the inhibition of lipid oxidative reactions in liver pâte. Food Sci Technol 40:58–65Google Scholar
  13. Faria EV, Yotsuyanagi K (2002) Técnicas de análise sensorial, 1st edn. ITAL/LAFISE, CampinasGoogle Scholar
  14. Franco BDGM, Landgraf M (2005) Microbiologia dos Alimentos. Editora Atheneu, São PauloGoogle Scholar
  15. Gatellier P, Gomez S, Gigaud V, Berri C, Bihan-Duval EL, Santé-Lhoutellier V (2007) Use of a fluorescence front face technique for measurement of lipid oxidation during refrigerated storage of chicken meat. Meat Sci 76:543–547CrossRefGoogle Scholar
  16. González L, Sandoval H, Sacristán N, Castro JM, Fresno JME, Tornadijo ME (2007) Identification of lactic acid bacteria isolated from Genestoso cheese throughout ripening and study of their antimicrobial activity. Food Control 18:716–722CrossRefGoogle Scholar
  17. Gray JI, Gomaa EA, Buckley DJ (1996) Oxidative quality and shelf life of meats. Meat Sci 43:111–123CrossRefGoogle Scholar
  18. Gutiérrez EMR, Domarco RE, Spoto MHF, Blumer L, Matraia C (2004) Efeito da radiação gama nas características físico-químicas e microbiológicas do queijo prato durante a maturação. Ciênc Tecnol Aliment 24:596–601 (in portuguese)CrossRefGoogle Scholar
  19. Heck CI, Mejia EG (2007) Yerba mate tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. J Food Sci 72:138–151CrossRefGoogle Scholar
  20. Hernández ERS, Guzmán IV (2003) Revision: alimentos e ingredientes funcionales derivados de la leche. Arch Latinoam Nutr 53:333–346Google Scholar
  21. Hernández-Hernandez E, Ponce-Alquicira E, Jaramillo-Flores ME, Legarreta GI (2009) Antioxidant effects of rosemary (Rosmarinus officinalis L.) and oregano (Origanum vulgare L.) extracts on TBARS and colours of model raw pork batters. Meat Sci 81:410–417CrossRefGoogle Scholar
  22. Howell NK, Herman H, Li-Chan ECY (2001) Elucidation of protein-lipid interactions in lysozyme-Corn oil system by fourier transform raman spectroscopy. J Agric Food Chem 49:1529–1533CrossRefGoogle Scholar
  23. International Dairy Federation (IDF) (1982) Cheese & processed cheese. Determination of the solids content. IDF (IDF Standard 4A), BrusselsGoogle Scholar
  24. International Dairy Federation (IDF) (1993) Milk. Total nitrogen content (Kjeldahl method). IDF (IDF Standard 20B), BrusselsGoogle Scholar
  25. Kaur N, Chugh V, Gupta AK (2012) Essential fatty acids as functional components of foods—a review. J Food Sci Technol. doi:10.1007/s13197-012-0677-0 Google Scholar
  26. Kealy T (2006) Application of liquid and solid rheological technologies to the textural characterization of semi-solid foods. Food Res Int 39:265–276CrossRefGoogle Scholar
  27. Kulisic T, Radonic A, Katalinic V, Milos M (2004) Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem 85:633–640Google Scholar
  28. Kumar S, Pedersen-Wismer J, Caspersen C (1986) Effect of raw materials deboning methods of chemical additives on microbial of mechanically deboned poultry meat during frozen storage. J Food Sci Technol 23:217–220Google Scholar
  29. Law J, Fitzgerald GF, Uniacke-Lowe T, Daly C, Fox PF (1993) The contribution of Lactococcal starter proteinases to proteolysis in Cheddar cheese. J Dairy Sci 76:2455–2467CrossRefGoogle Scholar
  30. Lawrence RC, Creamer LK, Gilles J (1987) Texture Development during Cheese Ripening. J Dairy Sci 70:1748–1760CrossRefGoogle Scholar
  31. Levine RL, Reznick AZ, Packer L (1990) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 186:357–363Google Scholar
  32. Mattila-Sandholm T, Myllarinen P, Crittenden R, Mogensen G, Fonden R, Saarela M (2002) Technological challenges for future probiotic foods. Int Dairy J 12:173–182CrossRefGoogle Scholar
  33. Menéndez S, Centeno JA, Godínez R, Rodríguez-Otero JL (2000) Effects of Lactobacillus strain on the ripening and organoleptic characteristics of Arzúa-Ulloa cheese. Int J Food Microbiol 59:37–46CrossRefGoogle Scholar
  34. Michida H, Tamalampudi S, Pandiella SS, Webb C, Fukuda H, Kondo A (2006) Effect of cereal extracts and cereal fiber on viability of lactobacillus plantarum under gastrointestinal tract conditions. Biochem Eng J 28:73–78CrossRefGoogle Scholar
  35. Milani LIG, Terra NN, Fries LLM, Kubota EH, Wagner R, Quadros CP, Rosa CS, Bianchin MR, Terra AM (2002) Natural antioxidants for mechanically deboned chicken meat. In: 48th International Congress of Meat Science and Technological. Congress Proceedings, RomaGoogle Scholar
  36. Miliauskas G, Venskutonis PR, Van TA (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 85:231–237CrossRefGoogle Scholar
  37. Moure A, Cruz JM, Franco D, Domínguez JM, Sineiro J, Domínguez H, Núñez J, Parajó JC (2001) Natural antioxidants from residual sources. Food Chem 72:145–171CrossRefGoogle Scholar
  38. Narimatsu A, Dornellas JRF, Spadoti LM, Pizaia PO, Roig SM (2003) Avaliação da proteólise e derretimento do queijo prato obtido por ultrafiltração. Ciênc Tecnol Aliment 23:177–182 (in portuguese)Google Scholar
  39. Oboh G, Akinyemi AJ, Ademiluyi AO, Bello FO (2012) Inhibitory effect of some tropical green leafy vegetables on key enzymes linked to Alzheimer's disease and some pro-oxidant induced lipid peroxidation in rats’ brain. J Food Sci Technol. doi:10.1007/s13197-011-0572-0 Google Scholar
  40. Pimentel-Gomes F (1987) Curso de estatística experimental, 12th edn. Livraria Nobel, São PauloGoogle Scholar
  41. Polorny J (2007) Are natural antioxidants better—and safer—than synthetic antioxidants? Eur J Lipid Sci Technol 109:629–642CrossRefGoogle Scholar
  42. Racanicci AMC, Danielsen B, Skibsted LH (2008) Mate (Ilex paraguariensis) as a source of water extractable antioxidant for use in chicken meat. Eur Food Res Technol 227:255–260CrossRefGoogle Scholar
  43. Raharjo S, Sofos NJ, Schimidt RG (1992) Improved speed, specificity, and limit of determination of an aqueous acid extration thiobarbituric acid-C18 method for measuring lipid peroxidation in beef. J Agric Food Chem 40:2182–2185CrossRefGoogle Scholar
  44. Rivelli DP, Silva VV, Ropke CD, Miranda DV, Almeida RL, Sawada TCH, Barros SBM (2007) Simultaneous determination of chlorogenic acid, caffeic acid and caffeine in hydroalcoholic and aqueous extracts of Ilex paraguariensis by HPLC and correlation with antioxidant capacity of the extracts by DPPH · reduction. Rev Bras Ciênc Farm 43:215–222 (in portuguese)CrossRefGoogle Scholar
  45. Saarela M, Mogensen G, Fondém R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84:197–215CrossRefGoogle Scholar
  46. Sarker DK, Wilde PJ, Clark DC (1995) Control of surfactant-induced destabilization of foams through polyphenol-mediated protein-protein interactions. J Agric Food Chem 43:295–300CrossRefGoogle Scholar
  47. Sasse A, Colindres P, Brewer MS (2009) Effect of natural and synthetic antioxidants on the oxidative stability of cooked, frozen pork patties. J Food Sci 74:30–35CrossRefGoogle Scholar
  48. Schinella GR, Troiani G, Davila V, Buschiazzo PM, Tournier HA (2000) Antioxidant effects of an aqueous extract of Ilex paraguariensis. Biochem Biophys Res 269:357–360CrossRefGoogle Scholar
  49. Sharma KD, Stähler K, Smith B, Melton L (2011) Antioxidant capacity, polyphenolics and pigments of broccoli-cheese powder blends. J Food Sci Technol 48:510–514CrossRefGoogle Scholar
  50. Souza MJ, Ardö Y, Mcsweeney PLH (2001) Advances in the study of proteolysis during cheese ripening. Int Dairy J 11:327–345CrossRefGoogle Scholar
  51. Spadoti LM, Dornellas JRF, Roig S (2005) Avaliação sensorial de queijo prato obtido por modificações do processo tradicional de fabricação. Ciênc Tecnol Aliment 25:705–712 (in portuguese)CrossRefGoogle Scholar
  52. Tang SZ, Kerry JP, Sheehan D, Buckley DJ, Morrissey PA (2001) Antioxidative effect of dietary tea catechins on lipid oxidation of long-term frozen stored chicken meat. Meat Sci 57:331–336CrossRefGoogle Scholar
  53. Trindade MA, Nunes TP, Contreras-Castillo CJ, Felício PE (2008) Estabilidade oxidativa e microbiológica em carne de galinha mecanicamente separada e adicionada de antioxidantes durante período de armazenamento a 18 °C. Ciênc Tecnol Aliment 28:160–168 (in portuguese)CrossRefGoogle Scholar
  54. Vanderzant C, Splittstoesser DF (1992) Compendium of methods for the microbiological examination of foods, 3rd edn. American Public Health Association (APHA), WashingtonGoogle Scholar
  55. Zamora R, Alaiz M, Hidalgo FJ (2000) Contribution of pyrrole formation and polymerization to the non-enzymatic browning produced by amino-carbonyl reactions. J Agric Food Chem 48:3152–3158CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2013

Authors and Affiliations

  • Andréia M. Faion
    • 1
  • Patrícia Beal
    • 1
  • Franciele T. Ril
    • 2
  • Alexandre J. Cichoski
    • 3
  • Rogério L. Cansian
    • 1
  • Alice T. Valduga
    • 1
  • Débora de Oliveira
    • 1
  • Eunice Valduga
    • 1
  1. 1.Departamento de Engenharia de AlimentosURI - Campus de ErechimErechimBrazil
  2. 2.Departamento de FarmáciaURI - Campus de ErechimErechimBrazil
  3. 3.Centro de Ciências Rurais, Departamento de Tecnologia e Ciência dos AlimentosUniversidade Federal de Santa Maria—UFSMSanta MariaBrazil

Personalised recommendations