Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains

Abstract

More than half of the world populations are affected by micronutrient malnutrition and one third of world’s population suffers from anemia and zinc deficiency, particularly in developing countries. Iron and zinc deficiencies are the major health problems worldwide. Phytic acid is the major storage form of phosphorous in cereals, legumes, oil seeds and nuts. Phytic acid is known as a food inhibitor which chelates micronutrient and prevents it to be bioavailabe for monogastric animals, including humans, because they lack enzyme phytase in their digestive tract. Several methods have been developed to reduce the phytic acid content in food and improve the nutritional value of cereal which becomes poor due to such antinutrient. These include genetic improvement as well as several pre-treatment methods such as fermentation, soaking, germination and enzymatic treatment of grains with phytase enzyme. Biofortification of staple crops using modern biotechnological techniques can potentially help in alleviating malnutrition in developing countries.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Agte VV, Gokhale MK, Chiplonkar SA (1997) Effect of natural fermentation on in vitro zinc bioavailability in cereal-legume mixture. Int J Food Sci Tech 31:29–32

    Article  Google Scholar 

  2. Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118

    Google Scholar 

  3. Asada K, Tanaka K, Kasai Z (1969) Formation of phytic acid in cereal grains. Ann NY Acad Sci 165:801–814

    CAS  Google Scholar 

  4. Boesch DF, Brinsfield RB, Magnien RE (2001) Chesapeake bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture. J Environ Qua 30:303–320

    CAS  Article  Google Scholar 

  5. Bohn T, Davidsson L, Walczyk T, Hurrell RF (2004) Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. Am J Clin Nutr 79:418–423

    CAS  Google Scholar 

  6. Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191

    CAS  Article  Google Scholar 

  7. Boling SD, Douglas MW, Johnson ML, Wang X, Parsons CM, Koelkebeck KW (2000) The effects of dietary available phosphorus levels and phytase performance of young and older laying hens. Poult Sci 79:224–230

    CAS  Article  Google Scholar 

  8. Brinch-Pedersen H, Sorensen LD, Holm PB (2002) Engineering crop plants: getting a handle on phosphate. Trends Plant Sci 7:118–125

    CAS  Article  Google Scholar 

  9. Cakmak I, Wolfgang HP, Bonnie M (2010) Biofortification of durum wheat with zinc and iron cereal chem 87:10–20

    Google Scholar 

  10. Cantrell RG, Joppa LR (1991) Genetic analysis of quantitative traits in wild emmer (Triticum turgidum L. var. dicoccoides). Crop Sci 31:645–649

    Article  Google Scholar 

  11. Chelius MK, Wodzinski RJ (1994) Strain improvement of Aspergillus niger for phytase production. Appl Micro Biotech 41:79–83

    CAS  Article  Google Scholar 

  12. Chen QC (2004) Determination of phytic acid and inositol pentakis phosphate in foods by HPLC. Agric Food Chem 52:4604–4613

    CAS  Article  Google Scholar 

  13. Coulibaly A, Kouakou B, Chen J (2011) Phytic acid in cereal grains: Healthy or harmful ways to reduce phytic acid in cereal grains and their effects on nutritional quality. Am J plant Nutr Fert Technol 1:1–22

    Article  Google Scholar 

  14. Das A, Raychaudhuri U, Chakraborty R (2011) Cereal based functional food of Indian subcontinent: a review. J Food Sci Tech. doi:10.1007/s13197-011-0474-1

    Google Scholar 

  15. Diaz RI, Gregory JF III, Hanson AD (2007) Folate biofortification of tomato fruit. Proc Natl Acad Sci USA 104:4218–4222

    Article  CAS  Google Scholar 

  16. Ebune A, Al-Asheh S, Duvnjak Z (1995) Production of phytase during solid-state fermentation using Aspergillus ficuum NRRL 3135 in canola meal. Biores Technol 53:7–12

    CAS  Article  Google Scholar 

  17. Erdman JW Jr (1979) Oilseeds phytate: nutritional implications. JAOCS 56:736–741

    CAS  Google Scholar 

  18. Ertas N, Turker S (2012) Bulgur processes increase nutrition value: possible role in in-vitro protein digestability, phytic acid, trypsin inhibitor activity and mineral bioavailability. J Food Sci Tech. doi:10.1007/s13197-012-0638-7

    Google Scholar 

  19. Feil B (2001) Phytic acid. J New Seeds 3:1–35

    Article  Google Scholar 

  20. Fiske CH, Subbarao Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    Google Scholar 

  21. Greiner R, Carlsson NG (2006) Myo-Inositol phosphate isomers generated by the action of a phytate-degrading enzyme from Klebsiella terrigena on phytate. Can J Microbiol 52:759–768

    CAS  Article  Google Scholar 

  22. Greiner R, Konietzny U (2006) Phytase for food application. Food Technol Biotechnol 44:125–140

    CAS  Google Scholar 

  23. Gupta RK, Singh NK, Sharma S, Shukla KP, Singh V (2011) Role of MicroRNA in crop plant improvement. OIJB 1:14–24

    Google Scholar 

  24. Guttieri MJ, Bowen D, Dorsch JA, Raboy V, Souza E (2004) Identification and characterization of low phytic acid wheat. Crop Sci 44:418–424

    CAS  Article  Google Scholar 

  25. Haard NF, Odunfa SA, Lee CH, Quintero-Ramirez A, Lorence-Quinones A, Wacher-Radarte C (1989) Fermented cereals.: a global perspective. FAO, Agricultural Service Bulletin 138

  26. Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt M, Zelder O (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597

    CAS  Article  Google Scholar 

  27. Hallberg L, Brune M, Rossander L (1989) Iron-absorption in man—ascorbic-acid and dose-dependent inhibition by phytate. Am J Clin Nutr 49:140–144

    CAS  Google Scholar 

  28. Hara A, Ebina S, Kondo A, Funaguma T (1985) A new type of phytase from pollen of Typha latifolia Agric. Biol Chem 49:3539–3544

    CAS  Google Scholar 

  29. Harland BF, Harland J (1980) Fermentative reduction of phytate in rye, white and whole wheat breads. Cereal Chem 57:226–229

    Google Scholar 

  30. Harland BF, Oberleas D (1986) Anion-exchange method for determination of phytate in foods-collaborative study. J Assoc Off Anal Chem 69:667–670

    CAS  Google Scholar 

  31. Harland BF, Prosky LD (1979) Development of dietary fibre values for foods. Cereal Foods World 24:387–394

    Google Scholar 

  32. Hawson SJ, Davis RP (1983) Production of phytate hydrolyzing enzyme by some fungi. Enzyme Microb Technol 5:377–382

    Article  Google Scholar 

  33. Heinonen JK, Lahti RJA (1981) New and convenient calorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Analytic Biochem 113:313–317

    Google Scholar 

  34. Idriss E, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow HT, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    CAS  Google Scholar 

  35. Iskander FY, Morad MM (1986) Multielement determination in wheat and bran. J R N C 105:151–156

    CAS  Google Scholar 

  36. Joanna S, Zbigniew K (2011) Evaluation of the content and bioaccessibility of iron, zinc, calcium and magnesium from groats, rice, leguminous grains and nuts. J Food Sci Tech. doi:10.1007/s13197-011-0535-5

    Google Scholar 

  37. Jorge EM, Wolfgang HP, Peter B (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    Article  CAS  Google Scholar 

  38. Kasim AB, Edwards HMJ (1998) The analysis of inositol phosphate forms in feed ingredients. Sci Food Agric 76:1–9

    CAS  Article  Google Scholar 

  39. Knorr D, Watkins TR, Carlson BL (1981) Enzymatic reduction of phytate in whole wheat breads. J Food Science 46:1866–1869

    CAS  Article  Google Scholar 

  40. Konietzny U, Greiner R (2002) Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int J Food Sci Technol 37:791–812

    CAS  Article  Google Scholar 

  41. Kostrewa D, Gruninger-Leitch F, Darcy A, Broger C, Mitchell D, Van Loon AP (1997) Crystal structure of phytase from Aspergillus ficuum at 2.5 Å resolution. Nat Struc Biol 4:185–190

    CAS  Article  Google Scholar 

  42. Kaur KD, Jha A, Sabikhi L, Singh AK (2011) Significance of coarse cereals in health and nutrition: a review. J Food Sci Tech. doi:10.1007/s13197-011-0612-9

    Google Scholar 

  43. Lehrfeld J (1994) HPLC separation and quantitation of phytic acid and some inositol phosphates in foods: problems and solutions. J Agric Food Chem 42:2726–2731

    CAS  Article  Google Scholar 

  44. Lei XG, Stahl CH (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl Microbiol Biotechnol 57:474–481

    CAS  Article  Google Scholar 

  45. Lestienne I, Caporiccio B, Besancon P, Rochette I, Treche S (2005) Relative contribution of phytates, fibers and tannins to low iron and zinc in vitro solubility in pearl millet (Pennisetum glaucum) flour and grain fractions. J Agric Food Chem 53:8342–8348

    CAS  Article  Google Scholar 

  46. Lie XG, Porres JM (2003) Phytase enzymology, applications and biotechnology. Biotechnol Lett 25:1787–1794

    Article  Google Scholar 

  47. Lim D, Golovan S, Forsberg C, Jia Z (2000) Crystal structures of Escherichia coli phytase and its complex with phytase. Nat Struct Biol 7:108–113

    CAS  Article  Google Scholar 

  48. Lolas GM, Palamidids N, Markakis P (1976) The phytic acid—total phosphorus relationship in barley, oats, soybeans and wheat. Cereal Chem 53:867–871

    CAS  Google Scholar 

  49. Lucca P, Hurrel R, Potrykus I (2001) Approaches to improving the bioavailability and level of iron in rice seeds. Theor Appl Genet 102:392–397

    CAS  Article  Google Scholar 

  50. Lung SC, Chan WL, Yip W, Wang L, Yeung EC, Lim BL (2005) Secretion of beta-propeller phytase from tobacco and Arabidopsis roots enhances phosphorus utilization. Plant Sci 169:341–349

    CAS  Article  Google Scholar 

  51. Maenz DD, Classen HL (1998) Phytase activity in the small intestinal brush-border membrane of the chicken. Poult Sci 77:557–563

    CAS  Article  Google Scholar 

  52. Mahgoub SEO, Elhag SA (1998) Effect of milling, soaking, malting, heat-treatment and fermentation on phytate level of four Sudanese sorghum cultivars. Food Chem 61:77–80

    CAS  Article  Google Scholar 

  53. Makokha AO, Oniango RK, Njoroge SM, Kamar OK (2002) Effect of traditional fermentation and malting on phytic acid and mineral availability from sorghum (Sorghum bicolor) and funger millet (Eleusine caracana) grain varieties grown in Kenya. Food Nutr Bull 23:241–245

    Google Scholar 

  54. Mallin MA (2000) Impacts of industrial animal production on rivers and estuaries. Am Sci 88:26–37

    Article  Google Scholar 

  55. Marshall AA, Samuel JE, Mary UE, Inegbenose GI (2011) Effect of germination on the phytase activity, phytate and total phosphorus contents of rice, maize, millet, sorghum and wheat. J Food Sci Tech 48:724–729

    Article  CAS  Google Scholar 

  56. Masud T, Mahmood T, Latif A, Sammi S, Hameed T (2007) Influence of processing and cooking methodologies for reduction of phytic acid content in wheat (Triticum aestivum) varieties. J Food Process Pres 31:583–594

    CAS  Article  Google Scholar 

  57. McCollum EV, Hart EB (1908) On the occurrence of a phytin-splitting enzyme in animal tissue. J Biol Chem 4:497–500

    Google Scholar 

  58. Milko J, Oscar M, Fumito M, Petra M, De La Maria LM (2008) Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes Enron 23:182–191

    Article  Google Scholar 

  59. Mollgaard H (1946) On phytic acid, its importance in metabolism and its enzymic cleavage in bread supplemented with calcium. Biochem J 40:589–603

    CAS  Google Scholar 

  60. Mullaney EJ, Daly CB, Kim T, Porres JM, Lei XG, Sethumadhavan K, Ullah AH (2002) Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Biochem Biophys Res Commun 297:1016–1020

    CAS  Article  Google Scholar 

  61. Mullaney EJ, Ullah AH (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312:179–184

    CAS  Article  Google Scholar 

  62. Mustafa KD, Adem E (2011) Comparison of autoclave, microwave, IR and UV-stabilization of whole wheat flour branny fractions upon the nutritional properties of whole wheat bread. J Food Sci Tech. doi:10.1007/s13197-011-0475-0

    Google Scholar 

  63. Nahm KH (2002) Efficient feed nutrient utilization to reduce pollutants in poultry and swine manure. Crit Rev Environ Sci Technol 32:1–16

    CAS  Article  Google Scholar 

  64. Nair VC, Duvnjak Z (1990) Reduction of phytic acid content in canola meal by Aspergillus ficuum in solid-state fermentation process. Appl Micro Biotech 34:183–188

    CAS  Article  Google Scholar 

  65. Naqvi SWA, Jayakumar DA, Narvekar PV, Naik H, Sarma VS, Souza DW (2000) Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408:346–349

    CAS  Article  Google Scholar 

  66. Nout MJR, Rambouts FM (1990) Recent developments in tempere search: a review. J Appl Bacteriol 69:609–633

    Article  Google Scholar 

  67. Nout MJR (1993) Processed weaning foods for tropical climates. Int J Food Sci Nutr 43:213–221

    Article  Google Scholar 

  68. O’Dell BL, Boland AR, Koirtyohann SR (1972) Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J Agric Food Chem 20:18–724

    Google Scholar 

  69. Pasamonts L, Haiker M, Wyss M, Van Loon AP (1997) Gene cloning, purification, and characterization of a heat stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol 63:1696–1700

    Google Scholar 

  70. Perlas LA, Gibson RS (2002) Use of soaking to enhance the bioavailability of iron and zinc from rice-based complementary foods used in the Philippines. J Sci Food Agric 82:1115–1121

    CAS  Article  Google Scholar 

  71. Phillippy BQ (2006) Transport of calcium across Caco-2 cells in the presence of inositol hexakisphosphate. Nutr Res 26:146–149

    CAS  Article  Google Scholar 

  72. Poiana MA, Alexa E, Bragea M (2009) Studies concerning the phosphorus bioavailability improvement of some cereals used in nourishment. Roumanian Biotechnol Lett 14:4467–4473

    Google Scholar 

  73. Ragon M, Aumelas A, Chemardin P, Santiago S, Moulin G, Boze H (2008) Complete hydrolysis of myo-inositol hexakisphosphate by a novel phytase from Debaryomyces castellii CBS 2923. Appl Microbiol Biotechnol 78:47–53

    CAS  Article  Google Scholar 

  74. Rapoport S, Leva E, Guest GM (1941) Phytase in plasma and erythrocytes of vertebrates. Biol Chem 139:621–632

    CAS  Google Scholar 

  75. Ravindran V, Ravindran G, Sivalogan S (1994) Total and phytate phosphorus contents of various foods and feedstuffs of plant origin. Food Chem 50:133–136

    CAS  Article  Google Scholar 

  76. Ravindran V, Bryden WL, Kornegay ET (1995) Phytates: occurrence, bioavailability and implications in poultry nutrition. Poult Avian Biol Rev 6:125–143

    Google Scholar 

  77. Rawat N, Tiwari VK, Singh N, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2009) Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet Resour Crop Evol 56:53–64

    Article  Google Scholar 

  78. Reddy NR, Sathe SK, Salunkhe DK (1982) Phytases in legumes and cereals. Adv Food Res 82:1–92

    Article  Google Scholar 

  79. Reddy MB, Hurrell RF, Juillerat MA, Cook JD (1996) The influence of different protein sources on phytate inhibition of nonheme-iron absorption in humans. A J Clin Nutr 63:203–207

    CAS  Google Scholar 

  80. Rehms H, Barz W (1995) Degradation of stachyose, raffinose, melibiose and sucrose by different tempe-producing Rhizopus fungi. Appl Microbiol Biotechnol 44:47–52

    CAS  Article  Google Scholar 

  81. Rodriguez E, Wood ZA, Karplus PA, Lei XG (2000) Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch Biochem Biophys 382:105–112

    CAS  Article  Google Scholar 

  82. Sandsted HH (1995) Is Zinc deficiency a public health problem? Nutrition 11:87–92

    Google Scholar 

  83. Schlemmer U, Frolich W, Prieto RM, Grases F (2009) Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53:S330–S375

    Article  Google Scholar 

  84. Schroder B, Breve G, Rodehutscord M (1996) Mechanisms of intestinal phosphorus absorption and availability of dietary phosphorus in pigs. Dtsch Tieraerztl Wochenschr 103:209–214

    CAS  Google Scholar 

  85. Scott JJ (1991) Alkaline phytase activity in nonionic detergent extracts of legume seeds. Plant Physiol 95:1298–1301

    CAS  Article  Google Scholar 

  86. Scott JJ, Loewus FA (1986) A calcium activated phytasr from pollen of Lilium longiflorum. Plant Physiol 82:333–335

    CAS  Article  Google Scholar 

  87. Segueilha L, Moulin G, Galzy P (1993) Reduction of phytate content in wheat bran and glandless cotton flour by Schwan niomyces castelii. J Agric Food Chem 41:2451–2454

    CAS  Article  Google Scholar 

  88. Selle PH, Ravindran V (2007) Microbial phytase in poultry nutrition. Animal Feed Sci Technol 135:1–41

    CAS  Article  Google Scholar 

  89. Shimizu M (1992) Purification and characterization of phytase from Bacillus subtilis (natto) N-77. Biosci Biotechnol Biochem 56:1266–1269

    CAS  Article  Google Scholar 

  90. Shi J, Wang H, Schellin K, Li B, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25:930–937

    CAS  Article  Google Scholar 

  91. Shieh TR, Ware JH (1968) Survey of microorganism for the production of extracellular phytase. Appl Microbiol 16:1348–1351

    CAS  Google Scholar 

  92. Shukla A, Singh NK (2012) Development and characterization of Indian Indam rice TILLING population and identification of mutants having low phytic acid content by endogenous phytase activity determination. Proc World Congress Biotechnol, Hyderabad 4–6

  93. Singh B, Kunze G, Satyanarayana T (2011) Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol Mol Bio Rev 6:69–87

    CAS  Google Scholar 

  94. Singh NK, Joshi DK, Gupta RK (2013) Isolation of phytase producing bacteria and optimization of phytase production parameters. J J Microbiol (in press)

  95. Steiner T, Mosenthin R, Zimmermann B, Greiner R, Roth S (2007) Distribution of phytase activity, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal by-products as influenced by harvest year and cultivar. Anim Feed Sci Tech 133:320–334

    Google Scholar 

  96. Suma PF, Urooj A (2011) Nutrients, antinutrients and bioaccessible mineral content (invitro) of pearl millet as influenced by milling. J Food Sci Tech. doi:10.1007/s13197-011-0541-7

    Google Scholar 

  97. Suzuki M, Tanaka K, Kuwano M, Yoshida KT (2007) Expression pattern of inositol phosphate related enzymes in rice (Oryza sativa L.): Implications for the phytic acid biosynthetic pathway. Gene 405:55–64

    CAS  Article  Google Scholar 

  98. Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutation in rice by TILLING. BMC Plant Biol 7:19

    Article  CAS  Google Scholar 

  99. Tomschy A, Tessier M, Wyss M, Brugger R, Broger C, Schnoebelen L, Van Loon APGM, Pasamontes M (2000) Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure. Protein Sci 9:1304–1311

    CAS  Article  Google Scholar 

  100. Turner BL, Haygarth PM (2000) Phosphorus forms and concentrations in leachate under four grassland soil types. Soil Sci Soc Am J 64:1090–1097

    CAS  Article  Google Scholar 

  101. Urbano G, Lopez-Jurado M, Aranda P, Vidal-Valverde C, Tenorio E, Porres J (2000) The role of phytic acid in legumes: antinutrient or beneficial function? J Physiol Biochem 56:283–294

    CAS  Article  Google Scholar 

  102. Vats P, Banerjee UC (2004) Production studies and catalytic properties of phytases (myo-inositol-hexakis-phosphate phosphohydrolases): an overview. Enzyme Microb Technol 35:3–14

    CAS  Article  Google Scholar 

  103. Vellingiri V, Hans KB (2010) Effect of certain indigenous processing methods on the bioactive compounds of ten different wild type legume grains. J Food Sci Tech 49:673–684

    Google Scholar 

  104. Venktachalam M, Sathe SK (2006) Chemical composition of selected edible nut seeds. J Agric Food Chem 54:4705–4714

    Article  CAS  Google Scholar 

  105. Vidal-Valverde C, Frias J, Estrella I, Gorospe MJ, Ruiz R, Bacon J (1994) Effect of processing on some antinutritional factors of lentils. J Agric Food Chem 42:2291–2295

    CAS  Article  Google Scholar 

  106. Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 23:29–36

    CAS  Article  Google Scholar 

  107. Wise A (1983) Dietary factors determining the biological activities of phytase. Nutr Abstr Rev 53:791–806

    Google Scholar 

  108. Wodzinski RJ, Ullah AH (1996) Phytase. Adv Appl Microbiol 42:263–301

    CAS  Article  Google Scholar 

  109. Yano F, Nakajima T, Matsuda M (1999) Reduction of nitrogen and phosphorus from livestock waste: a major priority for intensive animal production. Asian-Aust J Anim Sci 12:651–656

    Article  Google Scholar 

  110. Zhang HW, Bai XL (2011) Optimization of extraction conditions for phytic acid from rice bran using response surface methodology and its antioxidant effects. J Food Sci Tech. doi:10.1007/s13197-011-0521-y

    Google Scholar 

  111. Zhou JR, Erdman JW (1995) Phytic acid in health and disease. Crit Rev Food Sci Nutr 35:495–508

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nand Kumar Singh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, R.K., Gangoliya, S.S. & Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol 52, 676–684 (2015). https://doi.org/10.1007/s13197-013-0978-y

Download citation

Keywords

  • Phytic acid
  • Phytase
  • Dephytinization
  • Micronutrients
  • Monogastric animals