Skip to main content

Advertisement

Log in

Inactivation of polyphenol oxidase from watermelon juice by high pressure carbon dioxide treatment

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The inactivation of polyphenol oxidase from watermelon juice with high pressure carbon dioxide (HPCD) treatment was investigated. The maximum reduction of polyphenol oxidase (PPO) activity inactivated by HPCD treatment was 95.8% at 30 MPa and 50 °C for 30 min, which was far higher than 50.9% of control treatment at 50 °C for 30 min. The inactivation of PPO was adequately described by a two-fraction model, which indicated that a labile and stable fraction might present in PPO from watermelon juice. The kinetic rate constants kL and kS of labile and stable fractions were 1.976 and 0.041 min−1 by HPCD treatment of 30 MPa and 50 °C. And the labile fraction was easier to be inactivated by kinetic analysis. HPCD treatment with the combined effects of pressure, temperature, pH reduction, and time was stronger to inactivate PPO from watermelon juice than control treatment at the same temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anese M, Nicoli MC, Dallaglio G (1995) Effect of high p ressure treatments on peroxidase and polyphenoloxidase activities. J Food Biochem 18:285–293

    Article  CAS  Google Scholar 

  • Bakshi P, Masoodi FA (2010) Effect of pre-storage heat treatment on enzymological changes in peach. J Food Sci Technol 47:461–464

    Article  Google Scholar 

  • Balaban MO, Arreola AG, Marshall M, Peplow A, Wei CI, Cornell J (1991) Inactivation of pectinesterase in orange juice by supercritical carbon dioxide. J Food Sci 56:743–746

    Article  CAS  Google Scholar 

  • Castro SM, Loey AV, Saraiva JA, Smout C, Hendrickx M (2006) Inactivation of pepper (Capsicum annuum) pectin methylesterase by combined high-pressure and temperature treatments. J Food Eng 75:50–58

    Article  CAS  Google Scholar 

  • Chawla R, Ranote PS (2009) Preparation and quality evaluation of dehydrated watermelon products. J Food Sci Technol 46:228–231

    CAS  Google Scholar 

  • Chawla R, Patil GR, Singh AK (2011) High hydrostatic pressure technology in dairy precessing: a review. J Food Sci Technol 48:260–268

    Article  Google Scholar 

  • Chen JS, Balaban M, Wei CI, Marshall MR, Hsu WY (1992) Inactivation of polyphenol oxidase by high-pressure carbon dioxide. J Agric Food Chem 40:2345–2349

    Article  CAS  Google Scholar 

  • Corwin H, Shellhammer TH (2002) Combined carbon dioxide and high pressure inactivation of pectin methylesterase, polyphenol oxidase, Lactobacillus plantarum and Escherichia coli. J Food Sci 67:697–701

    Article  CAS  Google Scholar 

  • Damar S, Balaban MO (2006) Review of dense phase CO2 technology: Microbial and enzyme inactivation, and effects on food quality. J Food Sci 71:1–11

    Article  Google Scholar 

  • Denès JM, Baron A, Drilleau JF (2000) Purification, properties and heat inactivation of pectin methylesterase from apple (cv Golden Delicious). J Sci Food Agric 80:1503–1509

    Article  Google Scholar 

  • Dimick KP, Ponting JD, Makower B (1951) Heat inactivation of polyphenolase in fruit purees. Food Technol 5:237–241

    CAS  Google Scholar 

  • Duangmal K, Apenten RKO (1999) A comparative study of polyphenoloxidases from taro (Colocasia esculenta) and potato (Solanum tuberosum var. Romano). Food Chem 64:351–359

    Article  CAS  Google Scholar 

  • Flora LF (1976) Time-temperature influence on muscadine grape juice quality. J Food Sci 41:1312–1315

    Article  CAS  Google Scholar 

  • Fortea MI, López-Miranda S, Serrano-Martínez A, Carreño J, Núñez-Delicado E (2009) Kinetic characterisation and thermal inactivation study of polyphenol oxidase and peroxidase from table grape (Crimson Seedless). Food Chem 113:(1008–1014), 1008

    Google Scholar 

  • Gomes MRA, Ledward DA (1996) Effect of high pressure treatments on the activity of some polyphenoloxidases. Food Chem 56:1–5

    Article  CAS  Google Scholar 

  • Gui FQ, Chen F, Wu JH, Wang ZF, Liao XJ, Hu XS (2006) Inactivation and structural change of horseradish peroxidase treated with supercritical carbon dioxide. Food Chem 97:480–489

    Article  CAS  Google Scholar 

  • Gui FQ, Wu JH, Chen F, Liao XJ, Hu XS, Zhang ZH, Wang ZF (2007) Inactivation of polyphenol oxidases in cloudy apple juice exposed to supercritical carbon dioxide. Food Chem 100:1678–1685

    Article  CAS  Google Scholar 

  • Hayakawa K, Timbers GE, Stier EF (1977) Influence of heat treatment on the quality of vegetables: Organoleptic quality. J Food Sci 42:1286–1289

    Article  Google Scholar 

  • Hong SI, Pyun YR (1999) Inactivation kinetics of Lactobacillus plantarum by high pressure carbon dioxide. J Food Sci 64:728–733

    Article  CAS  Google Scholar 

  • Huang HC, Zhang Y, Liao HM, Hu XS, Wu JH, Liao XJ, Chen F (2009) Inactivation of Staphylococcus aureus exposed to dense phase carbon dioxide in a batch system. J Food Process Eng 32:17–34

    Article  Google Scholar 

  • Ishikawa H, Shimoda M, Kawano T, Osajima Y (1995) Inactivation of enzymes in an aqueous solution by micro-bubbles of supercritical carbon dioxide. Biosci Biotechnol Biochem 59:628–631

    Article  CAS  Google Scholar 

  • Jayaraman KS, Ramanuja MN, Dhakne YS, Vijayaraghavan PK (1982) Enzymatic browning in some banana varieties as related to polyphenoloxidase activity and other endogenous factors. J Food Sci Technol 19:181–186

    CAS  Google Scholar 

  • Kahn V (1976) Polyphenol oxidase isoenzymes in avocado. Phytochemistry 15:267–272

    Article  CAS  Google Scholar 

  • Kincal D, Hill WS, Balaban M, Portier KM, Sims CA, Wei CI, Marshall MR (2006) A continuous high-pressure carbon dioxide system for cloud and quality retention in orange juice. J Food Sci 71:338–344

    Article  Google Scholar 

  • Liao HM, Hu XS, Liao XJ, Chen F, Wu JH (2007) Inactivation of Escherichia coli inoculated into cloudy apple juice exposed to dense phase carbon dioxide. Int J Food Microbiol 118:126–131

    Article  CAS  Google Scholar 

  • Liu X, Gao YX, Peng XT, Yang B, Xu HG, Zhao J (2008) Inactivation of peroxidase and polyphenol oxidase in red beet (Beta vulgaris L.) extract with high pressure carbon dioxide. Innov Food Sci Emerg 9:24–31

    Article  CAS  Google Scholar 

  • Liu Y, Zhang C, Zhao XY, Ma Y, Li W, Liao XJ, Hu XS (2010) Inactivation of polyphenol oxidase from frozen red raspberry (Rubus idaeus L.) by high pressure carbon dioxide treatment. Int J Food Sci Technol 45:800–806

    Article  CAS  Google Scholar 

  • Matsui KN, Granado LM, de Oliveira PV, Tadini CC (2007) Peroxidase and polyphenol oxidase thermal inactivation by microwaves in green coconut water simulated solutions. LWT 40:852–859

    Article  CAS  Google Scholar 

  • Nagai T, Suzuki N (2003) Polyphenol oxidase from bean sprouts (Glycine max L.). J Food Sci 68:16–20

    Article  CAS  Google Scholar 

  • Nunes CS, Castro SM, Saraiva JA, Coimbra MA, Hendrickx ME, Van Loey AM (2006) Thermal and high-pressure stability of purified pectin methylesterase from plums (Prunus Domestica). J Food Biochem 30:138–154

    Article  CAS  Google Scholar 

  • Park EY, Luh BS (1985) Polyphenol oxidase of kiwifruit. J Food Sci 50:678–684

    Article  CAS  Google Scholar 

  • Paulus K, Saguy I (1980) Effect of heat treatment on the quality of cooked carrots. J Food Sci 45:239–241

    Article  CAS  Google Scholar 

  • Pozo-insfran DD, Balaban MO, Talcott ST (2007) Inactivation of polyphenol oxidase in muscadine grape juice by dense phase-CO2 processing. Food Res Int 40:894–899

    Article  Google Scholar 

  • Ross AIV, Griffiths MW, Mittal GS, Deeth HC (2003) Combining nonthermal technologies to control foodborne microorganisms. Int J Food Microbiol 89:125–138

    Article  Google Scholar 

  • Roy I, Sharma S, Gupta MN (2002) Separation of an isoenzyme of polyphenol oxidase from Duranta plumieri by expanded bed chromatography. Protein Expres Purif 24:181–187

    Article  CAS  Google Scholar 

  • Saraiva J, Oliveira JC, Lemos A, Hendrickx M (1996) Analysis of the kinetic patterns of horseradish peroxidase thermal inactivation in sodium phosphate buffer solutions of different ionic strength. Int J Food Sci Technol 31:223–231

    Article  CAS  Google Scholar 

  • Soysal Ç (2008) Kinetics and thermal activation/inactivation of starking apple polyphenol oxidase. J Food Process Pres 32:1034–1046

    Article  CAS  Google Scholar 

  • Tedjo W, Eshtiaghi MN, Knorr D (2000) Impact of supercritical carbon dioxide and high pressure on lipoxygenase and peroxidase activity. J Food Sci 65:1284–1287

    Article  CAS  Google Scholar 

  • Walker JRL, Ferrar PH (1998) Diphenol oxidases, enzyme-catalysed browning and plant disease resistance. Biotechnol Genet Eng Rev 15:457–498

    CAS  Google Scholar 

  • Weder JKP (1984) Studies on Proteins and Amino Acids Exposed to Supercritical Carbon Dioxide Extraction Conditions. Food Chem 15:175–190

    Article  CAS  Google Scholar 

  • Weder JKP, Bokor MV (1992) Effect of supercritical carbon dioxide on arginine. Food Chem 44:287–290

    Article  CAS  Google Scholar 

  • Weemaes CA, Ludikhuyze LR, Van den Broeck I, Hendrickx ME (1998) Effect of pH on pressure and thermal inactivation of avocado polyphenol oxidase: A kinetic study. J Agric Food Chem 46:2785–2792

    Article  CAS  Google Scholar 

  • Yemenicioğlu A, Özkan M, Cemeroğlu B (1997) Heat inactivation kinetics of apple polyphenoloxidase and activation of its latent form. J Food Sci 62:508–510

    Article  Google Scholar 

  • Yu B, Jin ZY, Deng L, Xu XM, He LF, Wang JP, Tian YQ, Chen HQ (2010) Kinetic study of thermal inactivation of potato peroxidase during high-temperature short-time processing. J Food Sci Technol 47:67–72

    Article  CAS  Google Scholar 

  • Zenin CT, Park YK (1978) Isoenzymes of polyphenol oxidase from high L-DOPA containing velvet bean. J Food Sci 43:646–647

    Article  CAS  Google Scholar 

  • Zhi X, Zhang Y, Hu XS, Wu JH, Liao XJ (2008) Inactivation of apple pectin methylesterase induced by dense phase carbon dioxide. J Agric Food Chem 56:5394–5400

    Article  CAS  Google Scholar 

  • Zhou LY, Wang YY, Hu XS, Wu JH, Liao XJ (2009) Effect of high pressure carbon dioxide on the quality of carrot juice. Innov Food Sci Emerg 10:321–327

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Hu, X.S., Zhao, X.Y. et al. Inactivation of polyphenol oxidase from watermelon juice by high pressure carbon dioxide treatment. J Food Sci Technol 50, 317–324 (2013). https://doi.org/10.1007/s13197-011-0356-6

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-011-0356-6

Keywords

Navigation