Skip to main content
Log in

Chemical composition of some plantation wood species (Eucalyptus saligna, Cupressus lusitanica and Eucalyptus paniculata) and assessment of compatibility with plaster

  • Original Article
  • Published:
Journal of the Indian Academy of Wood Science Aims and scope Submit manuscript

Abstract

The aim of this work was to evaluate the chemical composition of some plantation wood and the assessment of their compatibility with plaster. A quantitative analysis of the chemical composition each of the species (Eucalyptus saligna, Cupressus lusitanica and Eucalyptus paniculata) was carried out, followed by chemical compatibility evaluation using different types of wood particles. The quantitative analyses were carried out on wood powder of size between 0.27 and 0.30 mm. The results obtained were 2.4, 3.4 and 1.6% for ethanol–benzene extract (EAB); 2.6, 3.2 and 2.4% for hot water extract (EE); 12.4, 21.6 and 12.1% for 1% sodium hydroxide extract (ES); 48.6, 48.4 and 40.4% for cellulose content (C); 34.8, 34.3 and 36.3% for lignin content (L); then 0.1, 0.6, 0.3% for ash content (CE) respectively of E. saligna, C. lusitanica and E. paniculata. Chemical compatibility CA was measured from hydration temperature curves as a function of time using the area method. The results showed that compatibility CA decreased from 100 to 68% as the wood content in the composite increased up to 15% for all species and types of particles used. At this minimum value, the species was still considered as highly compatible in accordance with literature. Although compatibility is good, it decreased in the order E. paniculata followed by E. saligna and then C. lusitanica, the least compatible due to the inhibiting action of extractives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abuiboto NMC, Avom J, Mpon R, Mbadcam KJ, Belibi BDP (2013) Valorization of a Cameroonian species: moabi (Baillonella toxisperma Pierre) into activated carbons. Int J Curr Res Rev 5(8):01–10

    CAS  Google Scholar 

  • Adefisan OO, Idris A, Ojeabulu J (2012) Effects of particle size, composite mix and cold water treatment on the compressive strength of Eremospatha macrocarpa–cement composite. J Trop For Sci 24(3):344–347

    Google Scholar 

  • Boustingorry P, Grosseau P, Guyonnet R, Guilhot B (2005) The influence of wood aqueous extractives on the hydration kinetics of plaster. Cem Concr Res 35:2081–2086

    Article  CAS  Google Scholar 

  • Cheumani YAM (2009) Étude de la microstructure des composites bois/ciment par relaxométrie RMN du proton. Thèse de doctorat, Université de Bordeaux 1

  • Dai D, Fan M (2015) Preparation of bio-composites from wood sawdust and gypsum. Ind Crops Prod 74:417–424

    Article  CAS  Google Scholar 

  • Dutt D, Tyagi CH (2011) Comparison of various eucalyptus species for their morphological, chemical, pulp and paper making characteristics. IJCT 18:145–151

    Article  CAS  Google Scholar 

  • Ebanda BF (2012) Etude des propriétés mécaniques et thermiques du plâtre renforcé de fibres végétales tropicales. Thèse de doctorat, Université Blaise Pascal, Clermont-Ferrand II

  • Fan M, Ndikontar MK, Zhou X, Noah Ngamveng J (2012) Cement-bonded composites made from tropical woods: compatibility of wood and cement. Constr Build Mater 36:135–140

    Article  Google Scholar 

  • Govin A (2004) Aspect physico-chimique de l’interaction bois ciment: modification de l’hydratation du ciment par le bois. Thèse de Doctorat, Université Jean Monnet de St. Etienne

  • Hachmi M, Moslemi AA (1989) Correlation between wood-cement compatibility and wood extractives. Forest Prod J 39(6): 55–58

    CAS  Google Scholar 

  • Hachmi M, Moslemi AA (1990) Effect of wood pH and buffering on wood–cement compatibility. Holzforschung 44(6):425–430

    Article  CAS  Google Scholar 

  • Hamza S, Saad H, Charrier B, Ayed N, Bouhtoury Charrier-El F (2013) Physico-chemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites. Ind Crops Prod 49:357–365

    Article  CAS  Google Scholar 

  • Herrera RE, Cloutier A (2008) Compatibility of four Eastern Canadian woods with gypsum and gypsum–cement binders by isothermal calorimetry. Maderas Cienc Tecnol 10(3):275–288

    CAS  Google Scholar 

  • Huang Z, Hashadi K, Makino R, Kawamura F, Kuniyoshi S, Ryuichiro K, Ohara S (2009) Evaluation of biological activities of extracts from 22 African tropical wood species. J Wood Sci 55:225–229

    Article  CAS  Google Scholar 

  • Jorge FC, Pereira C, Ferreira JMF (2004) Wood–cement composites: a review. Holz Roh Werkst 62:370–377

    Article  CAS  Google Scholar 

  • Lee AWC, Hong Z (1987) Effect of cement/wood ratio and wood storage conditions on hydration temperature, hydration time and compressive strength of wood–cement mixture. Wood Fiber Sci 19(3):262–268

    Google Scholar 

  • Lee SW, Wang S, Pharr GM, Xu H (2007) Evalualation of interphases properties in a cellulose-fiber reinforced prolypropylene composite by nanoindentation an finite element analysis. Composites Part A 38:1517–1524

    Article  Google Scholar 

  • Moslemi AA, Lim YT (1984) Compatibity of Southern hardwoods with Portland cement. For Prod J 34:22–26

    Google Scholar 

  • Nasser AR, Al-Mefarrej HA, Abdel-Aal MA, Alshahrani TS (2014) Effects of tree species and wood particle size on the properties of cement-bonded particleboard manufacturing from tree prunings. J Environ Biol 35:961–971

    PubMed  Google Scholar 

  • Ndikontar MK (2005) Compatibility of some Cameroonian commercial tropical wood species with cement. Doctorat d’Etat Thesis, University of Yaoundé I

  • Ndikontar MK, Noah Ngamveng J (1990) Pulping Cassava talks by the nitric acid process. Cellul Chem Technol 24(4):523–530

    Google Scholar 

  • Ndikontar MK, Noah Ngamveng J (1997) Compatibility of tropical woods and cement. J Cameroon Build Mater 1(1):22–25

    Google Scholar 

  • Neiva DM, Gominho J, Pereira H (2014) Modeling and optimization of Eucalyptus globulus bark and wood delignification using response surface methodology. BioResources 9(2):2907–2921

    Article  CAS  Google Scholar 

  • Neiva D, Fernandes L, Araújo S, Lourenço A, Gominho J, Simões R, Pereira H (2015) Chemical composition and kraft pulping potential of 12 eucalypt species. Ind Crops Prod 66:89–95

    Article  CAS  Google Scholar 

  • Tappi: Test Methods T 212 om-02 (2002) One percent sodium hydroxide solubility of wood and pulp. Technical Association of the Pulp and Paper Industry, Atlanta, GA. TAPPI Test Methods, vol 1

  • Tappi: Test Methods T222 om-88 (1989) Acid-insoluble lignin wood and pulp. Technical Association of Pulp and Paper Industry, Atlanta, GA. TAPPI Test Methods, vol 1

  • Tappi: Test Methods T 204 om-97 (1997) Solvent extractives of wood and pulp. Technical Association of the Pulp and Paper Industry, Atlanta, GA. TAPPI Test Methods, vol 1

  • Pereira C, Jorge FC, Irke M, Ferreira JM (2006) Characterizing the setting of cement when mixed cork, blue gum, or maritime pine, grown in Portugal II: X-ray diffraction and differential thermal analyses. J Wood Sci 52(4):311–317

    Article  CAS  Google Scholar 

  • Saha Tchinda J-B (2015) Caractérisation et valorisation des substances extractibles de cinq essences camerounaises majeures de l’industrie du bois: Ayous, Moabi, Movingui, Padouk et Tali. Thèse de doctorat, Université de Lorraine

  • Saha Tchinda J-B, Abia D, Durmaçay S, Ndikontar KM, Gerardin P, Noah Ngamveng J, Perrin D (2013) Antioxidant activities, total phenolic contents and chemical compositions of extracts from four Cameroonian woods: Padouk (Pterocarpus soyauxii Taubb), tali (Erythrophleum suaveolens), moabi (Baillonella toxisperma), and movingui (Distemonanthus benthamianus). Ind Crops Prod 41:71–77

    Article  Google Scholar 

  • Saha Tchinda J-B, Petrissans A, Molina S, Ndikontar KM, Mounguengui S, Durmaçay S, Gerardin P (2014) Study of the feasibility of a natural dye on cellulosic textile supports by red padouk (Pterocarpus soyauxii) and yellow movingui (Distemonanthus benthamianus) extracts. Ind Crops Prod 60:291–297

    Article  CAS  Google Scholar 

  • Simatupang MH, Geimer RL (1990) Inorganic binder for wood composites: feasibility and limitations. In: Proceedings of wood adhesive symposium. Forest Product Resources Society, pp 169–176

  • Watanabe Y, Kojima Y, Ona T, Asada T, Sano Y, Fukazawa K, Funada R (2004) Histochemical study on heterogeneity of lignin in eucalyptus species II. The distribution of lignins and polyphenols in the walls of various cell types. Iawa J 25(3):283–295

    Article  Google Scholar 

  • Wei YM, Zhou YG, Tomita B (2000) Hydration behavior of wood cement-based composite I: evaluation of wood species effect on compatibility and strength with ordinary Portland cement. J Wood Sci 46:296–302

    Article  CAS  Google Scholar 

  • Zhengtian L, Moslemi AA (1986) Effect of Western larch extractives on cement setting. Forest Prod J 36(1):53–54

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Bosco Saha Tchinda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chokouadeu Youmssi, D.V., Modtegue Bampel, Y.D., Njankouo, J.M. et al. Chemical composition of some plantation wood species (Eucalyptus saligna, Cupressus lusitanica and Eucalyptus paniculata) and assessment of compatibility with plaster. J Indian Acad Wood Sci 14, 146–153 (2017). https://doi.org/10.1007/s13196-017-0200-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13196-017-0200-3

Keywords

Navigation