Journal of the Indian Academy of Wood Science

, Volume 14, Issue 2, pp 146–153 | Cite as

Chemical composition of some plantation wood species (Eucalyptus saligna, Cupressus lusitanica and Eucalyptus paniculata) and assessment of compatibility with plaster

  • David Vernon Chokouadeu Youmssi
  • Yves Didier Modtegue Bampel
  • Jacques Michel Njankouo
  • Jean-Bosco Saha TchindaEmail author
  • Maurice Kor Ndikontar
Original Article


The aim of this work was to evaluate the chemical composition of some plantation wood and the assessment of their compatibility with plaster. A quantitative analysis of the chemical composition each of the species (Eucalyptus saligna, Cupressus lusitanica and Eucalyptus paniculata) was carried out, followed by chemical compatibility evaluation using different types of wood particles. The quantitative analyses were carried out on wood powder of size between 0.27 and 0.30 mm. The results obtained were 2.4, 3.4 and 1.6% for ethanol–benzene extract (EAB); 2.6, 3.2 and 2.4% for hot water extract (EE); 12.4, 21.6 and 12.1% for 1% sodium hydroxide extract (ES); 48.6, 48.4 and 40.4% for cellulose content (C); 34.8, 34.3 and 36.3% for lignin content (L); then 0.1, 0.6, 0.3% for ash content (CE) respectively of E. saligna, C. lusitanica and E. paniculata. Chemical compatibility CA was measured from hydration temperature curves as a function of time using the area method. The results showed that compatibility CA decreased from 100 to 68% as the wood content in the composite increased up to 15% for all species and types of particles used. At this minimum value, the species was still considered as highly compatible in accordance with literature. Although compatibility is good, it decreased in the order E. paniculata followed by E. saligna and then C. lusitanica, the least compatible due to the inhibiting action of extractives.


Chemical composition Compatibility Plaster Plantation wood species 


  1. Abuiboto NMC, Avom J, Mpon R, Mbadcam KJ, Belibi BDP (2013) Valorization of a Cameroonian species: moabi (Baillonella toxisperma Pierre) into activated carbons. Int J Curr Res Rev 5(8):01–10Google Scholar
  2. Adefisan OO, Idris A, Ojeabulu J (2012) Effects of particle size, composite mix and cold water treatment on the compressive strength of Eremospatha macrocarpa–cement composite. J Trop For Sci 24(3):344–347Google Scholar
  3. Boustingorry P, Grosseau P, Guyonnet R, Guilhot B (2005) The influence of wood aqueous extractives on the hydration kinetics of plaster. Cem Concr Res 35:2081–2086CrossRefGoogle Scholar
  4. Cheumani YAM (2009) Étude de la microstructure des composites bois/ciment par relaxométrie RMN du proton. Thèse de doctorat, Université de Bordeaux 1Google Scholar
  5. Dai D, Fan M (2015) Preparation of bio-composites from wood sawdust and gypsum. Ind Crops Prod 74:417–424CrossRefGoogle Scholar
  6. Dutt D, Tyagi CH (2011) Comparison of various eucalyptus species for their morphological, chemical, pulp and paper making characteristics. IJCT 18:145–151CrossRefGoogle Scholar
  7. Ebanda BF (2012) Etude des propriétés mécaniques et thermiques du plâtre renforcé de fibres végétales tropicales. Thèse de doctorat, Université Blaise Pascal, Clermont-Ferrand IIGoogle Scholar
  8. Fan M, Ndikontar MK, Zhou X, Noah Ngamveng J (2012) Cement-bonded composites made from tropical woods: compatibility of wood and cement. Constr Build Mater 36:135–140CrossRefGoogle Scholar
  9. Govin A (2004) Aspect physico-chimique de l’interaction bois ciment: modification de l’hydratation du ciment par le bois. Thèse de Doctorat, Université Jean Monnet de St. EtienneGoogle Scholar
  10. Hachmi M, Moslemi AA (1989) Correlation between wood-cement compatibility and wood extractives. Forest Prod J 39(6): 55–58Google Scholar
  11. Hachmi M, Moslemi AA (1990) Effect of wood pH and buffering on wood–cement compatibility. Holzforschung 44(6):425–430CrossRefGoogle Scholar
  12. Hamza S, Saad H, Charrier B, Ayed N, Bouhtoury Charrier-El F (2013) Physico-chemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites. Ind Crops Prod 49:357–365CrossRefGoogle Scholar
  13. Herrera RE, Cloutier A (2008) Compatibility of four Eastern Canadian woods with gypsum and gypsum–cement binders by isothermal calorimetry. Maderas Cienc Tecnol 10(3):275–288Google Scholar
  14. Huang Z, Hashadi K, Makino R, Kawamura F, Kuniyoshi S, Ryuichiro K, Ohara S (2009) Evaluation of biological activities of extracts from 22 African tropical wood species. J Wood Sci 55:225–229CrossRefGoogle Scholar
  15. Jorge FC, Pereira C, Ferreira JMF (2004) Wood–cement composites: a review. Holz Roh Werkst 62:370–377CrossRefGoogle Scholar
  16. Lee AWC, Hong Z (1987) Effect of cement/wood ratio and wood storage conditions on hydration temperature, hydration time and compressive strength of wood–cement mixture. Wood Fiber Sci 19(3):262–268Google Scholar
  17. Lee SW, Wang S, Pharr GM, Xu H (2007) Evalualation of interphases properties in a cellulose-fiber reinforced prolypropylene composite by nanoindentation an finite element analysis. Composites Part A 38:1517–1524CrossRefGoogle Scholar
  18. Moslemi AA, Lim YT (1984) Compatibity of Southern hardwoods with Portland cement. For Prod J 34:22–26Google Scholar
  19. Nasser AR, Al-Mefarrej HA, Abdel-Aal MA, Alshahrani TS (2014) Effects of tree species and wood particle size on the properties of cement-bonded particleboard manufacturing from tree prunings. J Environ Biol 35:961–971PubMedGoogle Scholar
  20. Ndikontar MK (2005) Compatibility of some Cameroonian commercial tropical wood species with cement. Doctorat d’Etat Thesis, University of Yaoundé IGoogle Scholar
  21. Ndikontar MK, Noah Ngamveng J (1990) Pulping Cassava talks by the nitric acid process. Cellul Chem Technol 24(4):523–530Google Scholar
  22. Ndikontar MK, Noah Ngamveng J (1997) Compatibility of tropical woods and cement. J Cameroon Build Mater 1(1):22–25Google Scholar
  23. Neiva DM, Gominho J, Pereira H (2014) Modeling and optimization of Eucalyptus globulus bark and wood delignification using response surface methodology. BioResources 9(2):2907–2921CrossRefGoogle Scholar
  24. Neiva D, Fernandes L, Araújo S, Lourenço A, Gominho J, Simões R, Pereira H (2015) Chemical composition and kraft pulping potential of 12 eucalypt species. Ind Crops Prod 66:89–95CrossRefGoogle Scholar
  25. Tappi: Test Methods T 212 om-02 (2002) One percent sodium hydroxide solubility of wood and pulp. Technical Association of the Pulp and Paper Industry, Atlanta, GA. TAPPI Test Methods, vol 1Google Scholar
  26. Tappi: Test Methods T222 om-88 (1989) Acid-insoluble lignin wood and pulp. Technical Association of Pulp and Paper Industry, Atlanta, GA. TAPPI Test Methods, vol 1Google Scholar
  27. Tappi: Test Methods T 204 om-97 (1997) Solvent extractives of wood and pulp. Technical Association of the Pulp and Paper Industry, Atlanta, GA. TAPPI Test Methods, vol 1Google Scholar
  28. Pereira C, Jorge FC, Irke M, Ferreira JM (2006) Characterizing the setting of cement when mixed cork, blue gum, or maritime pine, grown in Portugal II: X-ray diffraction and differential thermal analyses. J Wood Sci 52(4):311–317CrossRefGoogle Scholar
  29. Saha Tchinda J-B (2015) Caractérisation et valorisation des substances extractibles de cinq essences camerounaises majeures de l’industrie du bois: Ayous, Moabi, Movingui, Padouk et Tali. Thèse de doctorat, Université de LorraineGoogle Scholar
  30. Saha Tchinda J-B, Abia D, Durmaçay S, Ndikontar KM, Gerardin P, Noah Ngamveng J, Perrin D (2013) Antioxidant activities, total phenolic contents and chemical compositions of extracts from four Cameroonian woods: Padouk (Pterocarpus soyauxii Taubb), tali (Erythrophleum suaveolens), moabi (Baillonella toxisperma), and movingui (Distemonanthus benthamianus). Ind Crops Prod 41:71–77CrossRefGoogle Scholar
  31. Saha Tchinda J-B, Petrissans A, Molina S, Ndikontar KM, Mounguengui S, Durmaçay S, Gerardin P (2014) Study of the feasibility of a natural dye on cellulosic textile supports by red padouk (Pterocarpus soyauxii) and yellow movingui (Distemonanthus benthamianus) extracts. Ind Crops Prod 60:291–297CrossRefGoogle Scholar
  32. Simatupang MH, Geimer RL (1990) Inorganic binder for wood composites: feasibility and limitations. In: Proceedings of wood adhesive symposium. Forest Product Resources Society, pp 169–176Google Scholar
  33. Watanabe Y, Kojima Y, Ona T, Asada T, Sano Y, Fukazawa K, Funada R (2004) Histochemical study on heterogeneity of lignin in eucalyptus species II. The distribution of lignins and polyphenols in the walls of various cell types. Iawa J 25(3):283–295CrossRefGoogle Scholar
  34. Wei YM, Zhou YG, Tomita B (2000) Hydration behavior of wood cement-based composite I: evaluation of wood species effect on compatibility and strength with ordinary Portland cement. J Wood Sci 46:296–302CrossRefGoogle Scholar
  35. Zhengtian L, Moslemi AA (1986) Effect of Western larch extractives on cement setting. Forest Prod J 36(1):53–54Google Scholar

Copyright information

© Indian Academy of Wood Science 2017

Authors and Affiliations

  • David Vernon Chokouadeu Youmssi
    • 1
  • Yves Didier Modtegue Bampel
    • 1
  • Jacques Michel Njankouo
    • 3
  • Jean-Bosco Saha Tchinda
    • 1
    • 2
    Email author
  • Maurice Kor Ndikontar
    • 1
  1. 1.Research Unit for Macromolecular Chemistry, Applied Inorganic Chemistry Laboratory, Faculty of ScienceUniversity of Yaounde IYaoundeCameroon
  2. 2.Laboratoire d’Etudes et de Recherche sur le Matériau Bois (LERMAB) (EA 4370 USC INRA), Faculté des Sciences et TechnologiesUniversité de LorraineVandoeuvre-lès-NancyFrance
  3. 3.Department of Civil Engineering, National Advanced School of EngineeringUniversity of Yaounde IYaoundeCameroon

Personalised recommendations