AlNoamany, Y., & Borghi, J. A. (2018). Towards computational reproducibility: Researcher perspectives on the use and sharing of software. PeerJ Computer Science, 4: e163. https://peerj.com/articles/cs-163. 31 Dec 2019.
Atmanspacher, H., & Maasen, S. (2016). Reproducibility: Principles, problems, practices, and prospects. Wiley-Blackwell.
Book
Google Scholar
Baker, M. (2016). 1,500 Scientists lift the lid on reproducibility. Nature News, 533(7604): 452. http://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970. 31 Dec 2019.
Bhandari Neupane, J., Neupane, R. P., Luo, Y., Yoshida, W. Y., Sun, R., & Williams, P. G. (2019). Characterization of leptazolines A-D, polar oxazolines from the cyanobacterium leptolyngbya sp., reveals a glitch with the “Willoughby–Hoye” scripts for calculating NMR chemical shifts. Organic Letters, 21(20), 8449–8453. https://doi.org/10.1021/acs.orglett.9b03216.
Article
Google Scholar
Benureau, F. C. Y., & Rougier, N. P. (2018). Re-Run, Repeat, Reproduce, Reuse, Replicate: Transforming code into scientific contributions. Frontiers in Neuroinformatics, 11. https://www.frontiersin.org/articles/https://doi.org/10.3389/fninf.2017.00069/full. 31 Dec 2019.
Chue Hong, N., Hettrick S., Jones, A., & Katz, D. (2015). The price of open-source software – a joint response. Software Sustainability Institute blog. https://www.software.ac.uk/blog/2016-09-22-price-open-source-software-joint-response. 31 Dec 2019.
Ensmenger, N. L. (2010). The computer boys take over: computers, programmers, and the politics of technical expertise. The MIT Press.
Book
Google Scholar
Geiger, S., Howard, D. R., Irani, L., Varoquaux, N., Paxton, A., & Holdgraf, C. (2019). “Who pays the costs of free and open-source scientific software?” 4S annual meeting. http://tinyurl.com/y2jqs4fb. 31 Dec 2019.
Gelfert, Axel. (2011). Scientific models, simulation, and the experimenter’s regress. In Paul Humphreys & Cyrille Imbert (Eds.), Models, Simulations, and Representations. (pp. 145–167). Routledge.
Google Scholar
Gezelter, J. D. (2015). Open source and open data should be standard practices. The Journal of Physical Chemistry Letters, 6(7), 1168–69. https://doi.org/10.1021/acs.jpclett.5b00285. 31 Dec 2019.
Article
Google Scholar
Hatton, L., & van Genuchten, M. (2019). Computational reproducibility: The elephant in the room. IEEE Software, 36(2), 137–144. https://doi.org/10.1109/MS.2018.2883805.
Article
Google Scholar
Hey, T., & Payne, M. C. (2015). Open science decoded. Nature Physics, 11(5): 367–69. https://www.nature.com/articles/nphys3313. 31 Dec 2019.
Hinsen, K. (2014). Computational science: shifting the focus from tools to models [version 2; peer review: 2 approved]. F1000Research 2014, 3, 101. https://doi.org/10.12688/f1000research.3978.2
Hinsen, K., & Rougier, N. (2019). Challenge to test reproducibility of old computer code. Nature, 574(7780): 634–634. https://www.nature.com/articles/d41586-019-03296-8. 31 Dec 2019.
Hocquet, A., & Wieber, F. (2017). ‘Only the initiates will have the secrets revealed’: Computational chemists and the openness of scientific software. IEEE Annals of the History of Computing, 39(4), 40–58. https://doi.org/10.1109/MAHC.2018.1221048.
Horner, J., & Symons, J. (2014). Reply to Angius and Primiero on software intensive science. Philosophy & Technology, 27(3), 491–494. https://doi.org/10.1007/s13347-014-0172-9.
Article
Google Scholar
Humphreys, P. (2004). Extending ourselves: Computational science, empiricism, and scientific method. Oxford University Press.
Book
Google Scholar
Jacob, C. R. (2016). How open is commercial scientific software? The Journal of Physical Chemistry Letters, 7(2), 351–53. https://doi.org/10.1021/acs.jpclett.5b02609. 31 Dec 2019.
Article
Google Scholar
Kelty, Christopher M. (2008). Two bits: The cultural significance of free software. Duke University Press.
Book
Google Scholar
Krylov, A. I., Herbert, J. M., Filipp, F., Head-Gordon, M., Knowles, P. J., Lindh, R., Manby, F. R., Pulay, P., Skylaris, C.-K., & Werner, H.-J. (2015). What is the price of open-source software? The Journal of Physical Chemistry Letters, 6(14), 2751–2754. https://doi.org/10.1021/acs.jpclett.5b01258. 31 Dec 2019.
Article
Google Scholar
Lejaeghere, K., Bihlmayer, G., Björkman, T., Blaha, P., Blügel, S., Blum, V., Caliste, D., Castelli, I. E., Clark, S. J., Dal Corso, A., de Gironcoli, S., Deutsch, T., Dewhurst, J. K., Di Marco, I., Draxl, C., Dułak, M., Eriksson, O., Flores-Livas, J. A., Garrity, K. F., & Cottenier, S. (2016). Reproducibility in density functional theory calculations of solids. Science (New York, N.Y.), 351(6280), aad3000. https://doi.org/10.1126/science.aad3000.
Article
Google Scholar
Lenhard, J., & Küster, U. (2019). Reproducibility and the concept of numerical solution. Minds and Machines, 29(1), 19–36. https://doi.org/10.1007/s11023-019-09492-9.
Article
Google Scholar
Leonelli, S. (2019). Rethinking reproducibility as a criterion for research quality. In Including a Symposium on Mary Morgan: Curiosity, Imagination, and Surprise, Research in the History of Economic Thought and Methodology, Emerald Publishing Limited, 129–146. https://doi.org/10.1108/S0743-41542018000036B009. 31 Dec 2019.
Mahoney, M. S. (2008). What makes the history of software hard. IEEE Annals of the History of Computing, 30(3), 8–18. https://doi.org/10.1109/MAHC.2008.55.
Article
Google Scholar
Miletić, V. (2015). “What is the price of open-source fear, uncertainty, and doubt?” nudged elastic band is my band name. https://nudgedelastic.band/2015/09/what-is-the-price-of-open-source-fear-uncertainty-and-doubt/. 31 Dec 2019.
Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060): 1226–27. https://science.sciencemag.org/content/334/6060/1226. 31 Dec 2019.
Reinhardt, C. (2001). Chemical sciences in the 20th century: Bridging boundaries. Weinheim; New York: Wiley-VCH
Reinhardt, C. (2006). A lead user of instruments in Science: John D. Roberts and the adaptation of nuclear magnetic resonance to organic Chemistry, 1955–1975. Isis, 97(2): 205–36. https://www.journals.uchicago.edu/doi/abs/https://doi.org/10.1086/504732. 29 Nov 2019.
Schappals, M., Mecklenfeld, A., Kröger, L., Botan, V., Köster, A., Stephan, S., García, E. J., Rutkai, G., Raabe, G., Klein, P., Leonhard, K., Glass, C. W., Lenhard, J., Vrabec, J., & Hasse, H. (2017). Round robin study: Molecular simulation of thermodynamic properties from models with internal degrees of freedom. Journal of Chemical Theory and Computation, 13(9), 4270–4280. https://doi.org/10.1021/acs.jctc.7b00489.
Article
Google Scholar
Spencer, M. (2015). Brittleness and bureaucracy: Software as a material for Science. Perspectives on Science, 23(4), 466–84. https://doi.org/10.1162/POSC_a_00184. 31 Dec 2019.
Article
Google Scholar
Stodden, V., McNutt, M., Bailey, D. H., Deelman, E., Gil, Y., Hanson, B., Heroux, M., A., Ioannidis, J. P. A., & Taufer, M. (2016). “Enhancing reproducibility for computational methods.” Science, 354(6317): 1240–41. https://science.sciencemag.org/content/354/6317/1240. 31 Dec 2019.
Symons, J., & Alvarado, R. (2019). Epistemic entitlements and the practice of computer simulation. Minds and Machines, 29(1), 37–60. https://doi.org/10.1007/s11023-018-9487-0.
Article
Google Scholar
Wieber, F., & Hocquet, A. (2020). Models, parameterization, and software: Epistemic opacity in computational chemistry. Perspectives on Science, 28(5), 610–629. https://doi.org/10.1162/posc_a_00352.
Winsberg, E. (2010). Science in the Age of Computer Simulation. University of Chicago Press.
Book
Google Scholar
Winsberg, E. (2019). “Computer Simulations in Science”, The Stanford Encyclopedia of Philosophy (Winter 2019 Edition), Edward N. Zalta (ed.). https://plato.stanford.edu/archives/win2019/entries/simulations-science/.