Evo-devo: a science of dispositions

Original Paper in Philosophy of Biology

Abstract

Evolutionary developmental biology (evo-devo) represents a paradigm shift in the understanding of the ontogenesis and evolutionary progression of the denizens of the natural world. Given the empirical successes of the evo-devo framework, and its now widespread acceptance, a timely and important task for the philosophy of biology is to critically discern the ontological commitments of that framework and assess whether and to what extent our current metaphysical models are able to accommodate them. In this paper, I argue that one particular model is a natural fit: an ontology of dispositional properties coherently and adequately captures the crucial casual-cum-explanatory role that the fundamental elements of evo-devo play within that framework.

Keywords

Evo-devo Dispositions Ontology 

References

  1. Allen, G. (2005). Mechanism, vitalism and organicism in late nineteenth and twentieth-century biology: the importance of historical context. Studies in the History and Philosophy of Biological and Biomedical Sciences, 36, 261–283.CrossRefGoogle Scholar
  2. Amundson, R. (2005). The changing role of the embryo in evolutionary thought: roots of evo-devo. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. Armstrong, D. (1997). A world of states of affairs. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  4. Ashery-Padan, R., & Gruss, P. (2001). Pax6 lights-up the way for eye development. Current Opinion in Cell Biology, 13, 706–714.CrossRefGoogle Scholar
  5. Aubin-Horth, N., & Renn, S. (2009). Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Molecular Ecology, 18, 3763–3780.CrossRefGoogle Scholar
  6. Bhattacharya, S., Zhang, Q., & Andersen, M. (2011). A deterministic map of Waddington's epigenetic landscape for cell fate specification. BMC Systems Biology, 1–11.Google Scholar
  7. Bird, A. (2007). Nature's metaphysics: Laws and Properties. Oxford: Oxford University Press.CrossRefGoogle Scholar
  8. Boogerd, F. C., Bruggeman, F. J., Richardson, R. C., Stephan, A., & Westerhoff, H. V. (2005). Emergence and its place in nature: a case study of biochemical networks. Synthese, 145, 131–135.CrossRefGoogle Scholar
  9. Boulter, S. J. (2012). Can evolutionary biology do without Aristotelian essentialism? Royal Institute of Philosophy Supplement, 83–103.Google Scholar
  10. Boyd, R. (1999). Homeostasis, species, and higher taxa. In R. Wilson (Ed.), Species: new interdisciplinary essays (pp. 141–186). Cambridge: The MIT Press.Google Scholar
  11. Brakefield, P. (2011). Evo-devo and accounting for Darwin's endless forms. Philosophical Transactions of the Royal Society, 2069–2075.Google Scholar
  12. Brigandt, I. (2007). Typology now: homology and developmental constraints explain evolvability. Biology & Philosophy, 22, 709–725.CrossRefGoogle Scholar
  13. Brigandt, I. (2009). Natural kinds in evolution and systematics: metaphysical and epistemological considerations. Acta Biotheoretica, 77–07.Google Scholar
  14. Brigandt, I. (2015). Evolutionary developmental biology and the limits of philosophical accounts of mechanistic explanation. In P. A. Braillard & C. Malaterre (Eds.), Explanation in biology: an enquiry into the diversity of explanatory patterns in the life sciences (pp. 135–173). Dordrecht: Springer.Google Scholar
  15. Callebaut, W., Muller, G., & Newman, S. (2007). The organismic systems approach: evo-devo and the streamlining of the naturalistic agenda. In R. Sansom & R. Brandon (Eds.), Integrating evolution and development: from theory to practice (pp. 25–92). Cambridge: MIT Press.Google Scholar
  16. Carroll, S. (2008). Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell, 134, 25–36.CrossRefGoogle Scholar
  17. Carroll, S., Grenier, J., & Weatherbee, S. (2001). From DNA to diversity: molecular genetics and the evolution of animal design. Oxford: Blackwell Science.Google Scholar
  18. Chakravartty, A. (2007). A metaphysics for scientific realism: knowing the unobservable. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. Cross, T. (2005). What is a disposition? Synthese, 144, 321–341.CrossRefGoogle Scholar
  20. Davidson, E. (2001). Genomic regulatory systems: in development and evolution. London: Academic Press.Google Scholar
  21. Davidson, E., & Erwin, D. (2006). Gene regulatory networks and the evolution of animal body plans. Science, 311, 796–800.CrossRefGoogle Scholar
  22. Davila-Velderrain, J., Martinez-Garcia, J. C., & Alvarez-Buyila, E. R. (2015). Modeling the epigenetic attractors landscape: toward a post-genomic mechanistic understanding of development. Frontiers in Genetics. doi:10.3389/fgene.2015.00160.Google Scholar
  23. Dupre, J. (2013). Living causes. Proceedings of the Aristotelian Society Supplementary Volume, 19, 38.Google Scholar
  24. Eble, G. (2005). Morphological modularity and macroevolution: conceptual and empirical aspects. In W. Callebaut & D. Rasskin-Gutman (Eds.), Modularity: understanding the development and evolution of natural complex systems (pp. 221–239). Cambridge: MIT Press.Google Scholar
  25. Edelman, G., & Gally, J. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of the Sciences, 98(24), 13763–13768.CrossRefGoogle Scholar
  26. Ellis, B. (2001). Scientific Essentialism. Cambridge: Cambridge University Press.Google Scholar
  27. Ereshefsky, M. (2012). Homology thinking. Biology & Philosophy, 27, 381–400.CrossRefGoogle Scholar
  28. Erwin, D., & Davidson, E. (2009). The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics, 10, 141–148.CrossRefGoogle Scholar
  29. Galis, F., & Metz, J. (2001). Testing the vulnerability of the Phylotypic stage: on modularity and evolutionary conservation. Journal of Experimental Zoology, 291, 195–204.CrossRefGoogle Scholar
  30. Gilbert, S., & Bolker, J. (2001). Homologies of process and modular elements of embryonic construction. Journal of Experimental Zoology, 291, 1–12.CrossRefGoogle Scholar
  31. Gilbert, S., & Sarkar, S. (2000). Embracing complexity: organicism for the twenty-first century. Developmental Dynamics, 219, 1–9.CrossRefGoogle Scholar
  32. Graf, T., & Enver, T. (2009). Forcing cells to change lineages. Nature, 462, 587–594.CrossRefGoogle Scholar
  33. Greenspan, R. (2001). The flexible genome. Nature, 2, 383–387.Google Scholar
  34. Gurdon, J., & Bourillot, P. (2001). Morphogen Gradient Interpretation. Nature, 413, 797–803.CrossRefGoogle Scholar
  35. Halder, G., Callaerts, P., & Gehring, W. (1995). Induction of ectopic eyes by targeted expression of the eyeless Gene in Drosophilia. Science, 267, 1788–1792.CrossRefGoogle Scholar
  36. Hall, B. (2003). Evo-devo: evolutionary developmental mechanisms. International Journal of Developmental Biology, 47, 491–495.Google Scholar
  37. Huang, S. (2012). The molecular and mathematical basis of Waddington’s epigenetic landscape: a framework for post-Darwinian biology? BioEssays, 34, 149–157.CrossRefGoogle Scholar
  38. Huneman, P. (2010). Topological explanations and robustness in biological sciences. Synthese, 177, 213–245.CrossRefGoogle Scholar
  39. Jaeger, J., & Monk, N. (2014). Bioattractors: dynamical systems theory and the evolution of regulatory processes. Journal of Physiology, 592, 2267–2281.CrossRefGoogle Scholar
  40. Jaeger, J., & Monk, N. (2015). Everything flows: a process perspective on life. EMBO Reports, 16, 1064–1067.CrossRefGoogle Scholar
  41. Jaeger, J., & Sharpe, J. (2014). On the concept of mechanism in development. In A. Minelli & T. Pradeu (Eds.), Towards a theory of development (pp. 56–78). Oxford: Oxford University Press.CrossRefGoogle Scholar
  42. Kalinka, A., Varga, K., Gerrard, D., Preibisch, S., Corcoran, D., Jarrells, J., et al. (2010). Gene expression divergence Recapituates the developmental hourglass model. Nature, 468, 811–814.CrossRefGoogle Scholar
  43. Kauffman, S. A. (1969). Metabolic stability and Epigenesis in randomly constructed nets. Journal of Theoretical Biology, 22, 437–467.CrossRefGoogle Scholar
  44. Kirschner, M., & Gerhart, J. (2006). The plausibility of life. New Haven: Yale University Press.Google Scholar
  45. Lewis, D. (1986). On the plurality of worlds. Oxford: Basil Blackwell.Google Scholar
  46. Lewis, D. (1997). Finkish dispositions. The Philosophical Quarterly, 47, 143–158.CrossRefGoogle Scholar
  47. Lewis, D. (2000). Causation as influence. The Journal of Philosophy, 97, 182–197.CrossRefGoogle Scholar
  48. Love, A. (2009). Typology reconfigured: from the metaphysics of essentialism to the epistemology of representation. Acta Biotheoretica, 57, 51–75.CrossRefGoogle Scholar
  49. Manley, D., & Wasserman, R. (2008). On linking dispositions and conditionals. Mind, 117, 59–84.CrossRefGoogle Scholar
  50. Mann, R., & Carroll, B. (2002). Molecular mechanics of selector Gene function and evolution. Current Opinion in Genetics & Development, 12, 592–600.CrossRefGoogle Scholar
  51. Martin, C. (2008). The mind in nature. Oxford: Oxford University Press.Google Scholar
  52. Mason, P. (2010). Degeneracy at multiple levels of complexity. Biological Theory, 5, 277–288.CrossRefGoogle Scholar
  53. Mayr, E. (1992). The idea of teleology. Journal of the History of Ideas, 53, 117–135.CrossRefGoogle Scholar
  54. McCune, A., & Schimenti, J. (2012). Using genomic networks and homology to understand the evolution of phenotypic traits. Current Genomics, 13, 74–84.CrossRefGoogle Scholar
  55. McKitrick, J. (2005). Are dispositions causally relevant? Synthese, 144, 357–371.CrossRefGoogle Scholar
  56. Mitchell, S. (2012). Emergence: logical, functional and dynamical. Synthese, 185, 171–186.CrossRefGoogle Scholar
  57. Molnar, G. (2003). Powers: a study in metaphysics. Oxford: Oxford University Press.Google Scholar
  58. Morganti, M. (2009). A new look at relational holism in quantum mechanics. Philosophy of Science, 76, 1027–1038.CrossRefGoogle Scholar
  59. Müller, G. (2003). Homology: The evolution of morphological organization. In G. B. Muller & S. A. Newman (Eds.), Origination of organismal form: Beyond the gene in developmental and evolutionary biology (pp. 51–69). Cambridge: MIT Press.Google Scholar
  60. Müller, G. (2008). Evo-Devo as a Discipline. In A. Minelli & G. Fusco (Eds.), Evolving pathways: key themes in evolutionary developmental biology (pp. 3–29). Cambridge: Cambridge University Press.Google Scholar
  61. Müller, G., & Newman, S. A. (1999). Generation, integration, autonomy: Three steps in the evolution of homology. Novartis Foundation Symposia, 222, 65–73.Google Scholar
  62. Mumford, S., & Anjum, R. (2011). Getting causes from powers. Oxford: Oxford University Press.CrossRefGoogle Scholar
  63. Nagel, E. (1977). Goal-directed processes in biology. The Journal of Philosophy, 74, 261–279.CrossRefGoogle Scholar
  64. Nathan, M. (2012). The varieties of molecular Explanatio. Philosophy of Science, 79, 233–254.CrossRefGoogle Scholar
  65. Newman, S., Forgacs, G., & Muller, G. (2006). Before programs: the physical origination of multicellular forms. International Journal of Developmental Biology, 50, 289–299.CrossRefGoogle Scholar
  66. Ney, A. (2015). Fundamental physical ontologies and the constraint of empirical coherence: a defense of wave function realism. Synthese, 192, 3105–3124.CrossRefGoogle Scholar
  67. Nicholson, D. (2012). The concept of mechanism in biology. Studies in History and Philosophy of Biological and Biomedical Sceinces, 43, 152–163.CrossRefGoogle Scholar
  68. Pigliucci, M. (2001). Phenotypic plasticity: beyond nature and nurture. Baltimore: Johns Hopkins University Press.Google Scholar
  69. Pigliucci, M., Schlichting, C., Jones, C., & Schwenk, K. (1996). Developmental reaction norms: the interactions among Allometry, ontogeny and plasticity. Plant Species Biology, 11, 69–85.CrossRefGoogle Scholar
  70. Place, U. (1996). Intentionality as the mark of the dispositional. Dialectica, 50, 91–120.CrossRefGoogle Scholar
  71. Quine, W. (1974). Roots of reference. La Salle: Open Court.Google Scholar
  72. Raff, R. A. (1996). The shape of life: genes, development, and the evolution of animal form. Chicago: University of Chicago Press.Google Scholar
  73. Raff, R., & Sly, B. (2000). Modularity and dissociation in the evolution of Gene expression territories in development. Evolution and Development, 2, 102–113.CrossRefGoogle Scholar
  74. Rieppel, O. (2005). Modules, kinds, and homology. Journal of Experimental Zoology, 304B, 18–27.CrossRefGoogle Scholar
  75. Rosa, L., & Etxeberria, A. (2011). Pattern and process in evo-devo: descriptions and explanations. In H. de Regt, S. Hartmann, & S. Okasha (Eds.), EPSA philosophy of science: Amsterdam 2009 (pp. 263–274). Dordrecht: Springer.Google Scholar
  76. Salazar-Ciudad, I., & Jernvall, J. (2013). The causality horizon and the developmental bases of morphological evolution. Biological Theory, 8, 286–292.CrossRefGoogle Scholar
  77. Schank, J., & Wimsatt, W. (2000). Modularity and generative entrenchment. In R. Singh, C. Krimbas, D. Paul, & J. Beatty (Eds.), Thinking about evolution: historical, philosophical, and political perspectives (pp. 322–335). Cambridge: Cambridge University Press.Google Scholar
  78. Schlichting, C., & Smith, H. (2002). Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evolutionary Ecology, 16, 189–211.CrossRefGoogle Scholar
  79. Striedter, G. (1998). Stepping into the same river twice: homologues as recurring attractors in epigenetic landscapes. Brain, Behavior and Evolution, 52, 218–231.CrossRefGoogle Scholar
  80. Tabata, T. (2001). Genetics of morphogen gradients. Nature, 2, 620–630.Google Scholar
  81. Verd, B., Crombach, A., & Jaeger, J. (2014). Classification of transient behaviours in a time-dependent toggle switch model. BMC Systems Biology, 1–19.Google Scholar
  82. Vetter, B. (2013). Multi-track dispositions. The Philosophical Quarterly, 330–352.Google Scholar
  83. Vetter, B. (2015). Potentiality: from dispositions to modality. Oxford: Oxford University Press.CrossRefGoogle Scholar
  84. Von Dassow, G., & Munro, E. (1999). Modularity in animal development and evolution: elements of a conceptual framework for evo devo. Journal of Experimental Zoology, 307–325.Google Scholar
  85. Waddington, C. H. (1957). The strategy of the genes. London: George Allen & Unwin.Google Scholar
  86. Wagner, G. (2000). Characters, units and natural kinds: an introduction. In G. Wagner (Ed.), The character concept in evolutionary biology (pp. 1–10). Connecticut: Academic Press.Google Scholar
  87. Wagner, G. (2007). The developmental genetics of homology. Nature Review of Genetics, 8(6), 473– 479.Google Scholar
  88. Wagner, G. (2014). Homology, genes, and evolutionary innovation. Princeton: Princeton University Press.CrossRefGoogle Scholar
  89. Wagner, G., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 967–976.Google Scholar
  90. Wagner, G., & Lynch, V. (2010). Evolutionary novelties. Current Biology, R48–R52.Google Scholar
  91. Walsh, D. (2006). Evolutionary essentialism. British Journal of the Philosophy of Science, 425–448.Google Scholar
  92. Walsh, D. (2012). Mechanism and purpose: a case of natural teleology. Studies in History and Philosophy of Biological Biomedical Sciences, 173–181.Google Scholar
  93. Walsh, D. (2013). Mechanism, emergence, and miscibility: the autonomy of evo-devo. In P. Huneman (Ed.), Functions: Selection and Mechanisms (pp. 43–65). Springer.Google Scholar
  94. Wang, J., Zhang, K., Xu, L., & Wang, E. (2011). Quantifying the Waddington Landscape and Biological Paths for Development and Differentiation. Proceedings of the National Academy of Sciences of the United States of America, 8257–8262.Google Scholar
  95. West-Eberhard, M. (2003). Developmental plasticity and evolution. New York: Oxford University Press.Google Scholar
  96. Whitacre, J., & Bender, A. (2010). Networked buffering: A basic mechanism for distributed robustness in complex adaptive systems. Theoretical Biology and Medical Modelling, 7(20), 1–20.Google Scholar
  97. Wilkins, A. (2002). The evolution of developmental pathways. Sunderland, MA: Sinauer Associates, Inc..Google Scholar
  98. Wilson, R., Barker, M., & Brigandt, I. (2007). When traditional essentialism fails: biological natural kinds. Philosophical Topics, 189–215.Google Scholar
  99. Wimsatt, W. (2000). Emergence as non-Aggregativity and the biases of reductionisms. Foundations of Science, 269–297.Google Scholar
  100. Winther, R. (2005). Evolutionary developmental biology meets levels of selection: modular integration or competition, or both? In W. Callebaut & D. Rasskin-Gutman (Eds.), Modularity: understanding the development and evolution of natural complex systems (pp. 61–98). Cambridge: MIT Press.Google Scholar
  101. Woese, C. (2004). A new biology for a new century. Microbiology and Molecular Biology Reviews, 173–186.Google Scholar
  102. Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford: Oxford University Press.Google Scholar
  103. Woodward, J. (2010). Causation in biology: Stability, specificity, and the choice of levels of explanation. Biology and Philosophy, 25(3), 287–318.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Radcliffe HumanitiesUniversity of OxfordOxfordUK

Personalised recommendations