Deflating the deflationary view of information

  • Olimpia Lombardi
  • Sebastian Fortin
  • Cristian López
Original paper in Philosophy of Physics

Abstract

Christopher Timpson proposes a deflationary view about information, according to which the term ‘information’ is an abstract noun and, as a consequence, information is not part of the material contents of the world. The main purpose of the present article consists in supplying a critical analysis of this proposal, which will lead us to conclude that information is an item even more abstract than what Timpson claims. From this view, we embrace a pluralist stance that recognizes the legitimacy of different interpretations of the concept of information.

Keywords

Information Shannon Deflationary interpretation Epistemic interpretation Physical interpretation 

References

  1. Adriaans, P. (2013). Information. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2013 Edn.). http://plato.stanford.edu/archives/fall2013/entries/information/.
  2. Adriaans, P., & van Benthem, J. (2008). Philosophy of information (handbook of the philosophy of science 8). Amsterdam: Elsevier.Google Scholar
  3. Austin, J. L. (1950). Truth. Proceedings of the Aristotelian Society. In M. P. Lynch (Ed.), The nature of truth: classic and contemporary perspectives (pp. 25–40). Cambridge, MA: MIT Press.Google Scholar
  4. Bar-Hillel, Y. (1964). Language and information: selected essays on their theory and application. Reading, MA: Addison-Wesley.Google Scholar
  5. Bar-Hillel, Y., & Carnap, R. (1953). Semantic information. The British Journal for the Philosophy of Science, 4, 147–157.CrossRefGoogle Scholar
  6. Barwise, J., & Seligman, J. (1997). Information flow. The logic of distributed systems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Berkson, W. (1974). Fields of force: the development of a world view from faraday to Einstein. London: Routledge and K. Paul.Google Scholar
  8. Bub, J. (2007). Quantum information and computation. In J. Butterfield & J. Earman (Eds.), Philosophy of physics. Part B (pp. 555–660). Amsterdam: Elsevier.CrossRefGoogle Scholar
  9. Chaitin, G. (1966). On the length of programs for computing binary sequences. Journal of the Association for Computing Machinery, 13, 547–569.CrossRefGoogle Scholar
  10. Clifton, R., Bub, J., & Halvorson, H. (2003). Characterizing quantum theory in terms of information-theoretic constraints. Foundations of Physics, 33, 1561–1591.CrossRefGoogle Scholar
  11. Cover, T., & Thomas, J. (1991). Elements of information theory. New York: John Wiley & Sons.CrossRefGoogle Scholar
  12. Dretske, F. (1981). Knowledge & the flow of information. Cambridge, MA: MIT Press.Google Scholar
  13. Duwell, A. (2003). Quantum information does not exist. Studies in History and Philosophy of Modern Physics, 34, 479–499.CrossRefGoogle Scholar
  14. Duwell, A. (2008). Quantum information does exist. Studies in History and Philosophy of Modern Physics, 39, 195–216.CrossRefGoogle Scholar
  15. Earman, J. (1989). World enough and space-time: absolute versus relational theories of space and time. Cambridge, MA: MIT Press.Google Scholar
  16. Fetzer, J. H. (2004). Information: does it have to be true? Minds and Machines, 14, 223–229.CrossRefGoogle Scholar
  17. Floridi, L. (2004). Outline of a theory of strongly semantic information. Minds and Machines, 14, 197–222.CrossRefGoogle Scholar
  18. Floridi, L. (2005). Is information meaningful data? Philosophy and Phenomenological Research, 70, 351–370.CrossRefGoogle Scholar
  19. Floridi, L. (2010). Information – a very short introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
  20. Floridi, L. (2011). The philosophy of information. Oxford: Oxford University Press.CrossRefGoogle Scholar
  21. Floridi, L. (2015). Semantic conceptions of information. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2015 Edn.). http://plato.stanford.edu/archives/spr2015/entries/informationsemantic/.
  22. Frigg, R. (2008). A field guide to recent work on the foundations of statistical mechanics. In D. Rickles (Ed.), The Ashgate companion to contemporary philosophy of physics (pp. 99–196). Aldershot: Ashgate Publishing.Google Scholar
  23. Graham, G. (1999). The internet: a philosophical inquiry. London: Routledge.Google Scholar
  24. Hartley, R. (1928). Transmission of information. Bell System Technical Journal, 7, 535–563.CrossRefGoogle Scholar
  25. Hoel, E., Albantakis, L., & Tononi, G. (2013). Quantifying causal emergence shows that macro can beat micro. Proceedings of the National Academy of Sciences, 110, 19790–19795.CrossRefGoogle Scholar
  26. Khinchin, A. (1957). Mathematical foundations of information theory. New York: Dover.Google Scholar
  27. Kolmogorov, A. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1, 4–7.Google Scholar
  28. Kolmogorov, A. (1968). Logical basis for information theory and probability theory. IEEE Transactions on Information Theory, 14, 662–664.CrossRefGoogle Scholar
  29. Kuhlmann, M. (2010). The ultimate constituents of the material world – in search of an ontology for fundamental physics. Frankfurt: Ontos Verlag.CrossRefGoogle Scholar
  30. Landauer, R. (1991). Information is physical. Physics Today, 44, 23–29.CrossRefGoogle Scholar
  31. Landauer, R. (1996). The physical nature of information. Physics Letters A, 217, 188–193.CrossRefGoogle Scholar
  32. Lombardi, O. (2004). What is information? Foundations of Science, 9, 105–134.CrossRefGoogle Scholar
  33. Lombardi, O. (2005). Dretske, Shannon’s theory and the interpretation of information. Synthese, 144, 23–39.CrossRefGoogle Scholar
  34. Lombardi, O., & Labarca, M. (2005). Los enfoques de Boltzmann y Gibbs frente al problema de la irreversibilidad. Critica, 37, 39–81.Google Scholar
  35. Lombardi, O., Fortin, S., & Vanni, L. (2015a). A pluralist view about information. Philosophy of Science. http://www.jstor.org/stable/10.1086/683650.
  36. Lombardi, O., Holik, L., & Vanni, L. (2015b). What is Shannon information? Synthese. doi:10.1007/s11229-015-0824-z.Google Scholar
  37. Reza, F. (1961). Introduction to information theory. New York: McGraw-Hill.Google Scholar
  38. Robinson, H. (2014). Substance. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2014 Edn.). http://plato.stanford.edu/archives/spr2014/entries/substance/.
  39. Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35, 1637–1678.CrossRefGoogle Scholar
  40. Scarantino, A., & Piccinini, G. (2010). Information without truth. Metaphilosophy, 41, 313–330.CrossRefGoogle Scholar
  41. Schumacher, B. (1995). Quantum coding. Physical Review A, 51, 2738–2747.CrossRefGoogle Scholar
  42. Shannon, C. (1948). The mathematical theory of communication. Bell System Technical Journal, 27, 379–423.CrossRefGoogle Scholar
  43. Shannon, C. (1993). In N. Sloane & A. Wyner (Eds.), Collected papers. New York: IEEE Press.Google Scholar
  44. Shannon, C., & Weaver, W. (1949). The mathematical theory of communication. Urbana and Chicago: University of Illinois Press.Google Scholar
  45. Solomonoff, R. (1964). A formal theory of inductive inference. Information and Control, 7, 224–254.CrossRefGoogle Scholar
  46. Stonier, T. (1990). Information and the internal structure of the universe: an exploration into information physics. New York-London: Springer.CrossRefGoogle Scholar
  47. Stonier, T. (1996). Information as a basic property of the universe. Biosystems, 38, 135–140.CrossRefGoogle Scholar
  48. Strawson, P. F. (1950). Truth. Proceedings of the Aristotelian Society. In M. P. Lynch (Ed.), The nature of truth: classic and contemporary perspectives (pp. 447–471). Cambridge, MA: MIT Press.Google Scholar
  49. Thomson, W. (1881). On the sources of energy in nature available to man for the production of mechanical effect. Science, 2, 475–478.CrossRefGoogle Scholar
  50. Timpson, C. (2003). On a supposed conceptual inadequacy of the Shannon information in quantum mechanics. Studies in History and Philosophy of Modern Physics, 34, 441–468.CrossRefGoogle Scholar
  51. Timpson, C. (2004). Quantum information theory and the foundations of quantum mechanics. Ph.D diss., University of Oxford (arXiv:quant-ph/0412063).Google Scholar
  52. Timpson, C. (2005). Nonlocality and information flow: the approach of Deutsch and Hayden. Foundations of Physics, 35, 313–343.CrossRefGoogle Scholar
  53. Timpson, C. (2006). The grammar of teleportation. The British Journal for the Philosophy of Science, 57, 587–621.CrossRefGoogle Scholar
  54. Timpson, C. D. (2008). Philosophical aspects of quantum information theory. In D. Rickles (Ed.), The Ashgate companion to the new philosophy of physics (pp. 197–261). Aldershot: Ashgate Publishing.Google Scholar
  55. Timpson, C. (2013). Quantum information theory and the foundations of quantum mechanics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  56. Wetzel, L. (2011). Types and tokens. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2011 Edn.). http://plato.stanford.edu/archives/spr2014/entries/types-tokens/.

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Olimpia Lombardi
    • 1
  • Sebastian Fortin
    • 1
  • Cristian López
    • 1
  1. 1.CONICET – Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations