Distinguishing between legitimate and illegitimate values in climate modeling

Original paper in Philosophy of Science


While it is widely acknowledged that science is not “free” of non-epistemic values, there is disagreement about the roles that values can appropriately play. Several have argued that non-epistemic values can play important roles in modeling decisions, particularly in addressing uncertainties (Moss and Schneider 2000; Kandlikar et al. (C.R. Geoscience 337:443-455, 2005); Risbey 2007; Biddle and Winsberg 2010; Winsberg (Kennedy Institute of Ethics Journal 22(2): 111-137, 2012); van der Sluijs (Climatic Change 75 (3) 359-389, 2012). On the other hand, such values can (even unconsciously) lead to bias (Pielke 2007; Oppenhiemer et al. (Science 317:1505-1506, 2007); Bray (Environmental Science & Policy 13:340-350, 2010); Oreskes and Conway 2010). Thus, it is important to identify when it is legitimate to appeal to non-epistemic values in modeling decisions. An approach is defended here whereby such value judgments are legitimate when they promote democratically endorsed epistemological and social aims of research. This framework accounts for why it is legitimate to appeal to non-epistemic values in a range of modeling decisions, while addressing concerns that the presence of such values will lead to bias or give scientists disproportionate power in deciding what values ought to be endorsed.


Climate science Values in science Objectivity Aims of science Underdetermination Inductive risk 



The author wishes to thank organizers and participants from the Workshop of the Roles of Climate Models for providing feedback on an earlier version of this manuscript as well as two anonymous reviewers.


  1. Agarwal, A. (2002). A southern perspective on curbing global climate change. In S. H. Schneider, R. Armin, & J. O. Niles (Eds.), In climate change policy: A survey (pp. 375–391). Washington: Island Press.Google Scholar
  2. Allen, M. (2003). Liability for climate change. Nature, 421(6926), 891–892.CrossRefGoogle Scholar
  3. Anderson, E. (2004). Uses of value judgments in science: a general argument with lessons from a case study on divorce. Hypatia, 19, 1–24.CrossRefGoogle Scholar
  4. Betz, G. (2007). Probabilities in climate policy advice: a critical comment. Climatic Change, 85, 1–9.CrossRefGoogle Scholar
  5. Betz, G. (2013). In defence of the value-free ideal. European Journal of Philosophy of Science, 3, 307–320.CrossRefGoogle Scholar
  6. Biddle, J., & Eric, W. (2010). Value judgments and the estimation of uncertainty in climate modeling. In P. D. Magnus & B. Jacob (Eds.), New waves in philosophy of science (pp. 172–197). Basingstoke: Palgrave MacMillan.Google Scholar
  7. Bray, D. (2010). The scientific consensus of climate change revisited. Environmental Science & Policy, 13, 340–350.CrossRefGoogle Scholar
  8. Brown, M. (2013). Values in science beyond underdetermination and inductive risk. Philosophy of Science, 80, 829–839.CrossRefGoogle Scholar
  9. Callicott, J. B., Crowder, L. B., & Mumford, K. (1999). Current normative concepts in conservation. Conservation Biology, 13, 22–35.CrossRefGoogle Scholar
  10. Christidis, N., Stott, P. A., Jones, G. S., Shiogama, H., Nozawa, T., & Luterbacher, J. (2012). Human activity and anomalously warm seasons in Europe. International Journal of Climatology, 32(2), 225–239.CrossRefGoogle Scholar
  11. Douglas, H. (2009). Science, policy, and the value-free ideal. Pittsburgh: University of Pittsburgh Press.Google Scholar
  12. Dupré, J. (2007). Fact and value. In H. Kincaid, J. Dupre, A. Wylie (Eds.), Value-free science: Ideals and illusions (p. 27–41). New York: Oxford University PressGoogle Scholar
  13. Elliott, K. (2011). Is a little pollution good for you? New York: Oxford University Press.CrossRefGoogle Scholar
  14. Elliott, K. (2013). Douglas on values: from indirect roles to multiple goals. Studies in History and Philosophy of Science, 44, 375–383.CrossRefGoogle Scholar
  15. Elliott, K., & McKaughn, D. (2014). Non-epistemic values and the multiple goals of science. Philosophy of Science, 81(1), 1–21.CrossRefGoogle Scholar
  16. Epstein, S. (1996). Impure science; AIDS, activism, and the politics of knowledge. Berkeley, CA: University of California Press.Google Scholar
  17. Hulme, M., O’Neill, S. J., & Dessai, S. (2011). Is weather event attribution necessary for adaptation funding? Science, 334, 764–5.CrossRefGoogle Scholar
  18. IAC. (2012). Responsible conduct in the global research enterprise: a policy report. Amsterdam: InterAcademy Council.Google Scholar
  19. Intemann, K., & de Melo-Martín, I. (2010). Social values and evidentiary standards: the case of the HPV vaccine. Biology and Philosophy, 25(2), 203–213.CrossRefGoogle Scholar
  20. IPCC. (2008). Procedures for the preparation, review, acceptance, adoption, approval and publication of IPCC reports,” Appendix A to the Principles Governing IPCC Work. Google Scholar
  21. IPCC. (2013). Working Group I conribution to the IPCC Fifth Assessment Report on Climate Change 2013: The Physical Science Basis. Accessed October 2013.
  22. Kandlikar, M., Risbey, J., & Dessai, S. (2005). Representing and communicating deep uncertainty in climate-change assessments. C.R. Geoscience, 337, 443–455.CrossRefGoogle Scholar
  23. Kirchhoff, C., Lemos, M. C., & Dessai, S. (2013). Actionable knowledge for environmental decision making: broadening the usability of climate science. Annual Review of Environmental Resources, 38, 393–414.CrossRefGoogle Scholar
  24. Kloprogge, P., & van der Sluijs, J. (2006). The inclusion of stakeholder knowledge and perspectives in integrated assessment of climate change. Climatic Change, 75(3), 359–389.CrossRefGoogle Scholar
  25. Lacey, H. (1999). Is science value-free? values and scientific understanding. New York: Routledge.Google Scholar
  26. Lackey, Robert T. (2007). Science, scientists and policy advocacy,: U.S. Environmental Protection Agency Papers. Paper 142.Google Scholar
  27. Longino, H. E. (1990). Science as social knowledge : values and objectivity in scientific inquiry. Princeton: Princeton University Press.Google Scholar
  28. Longino, H. E. (1995). Gender, politics, and theoretical virtues. Synthese, 104(3), 383–397.CrossRefGoogle Scholar
  29. Maslin, M., & Austin, O. (2012). Uncertainty: climate models at their limit? Nature, 486, 183–184.CrossRefGoogle Scholar
  30. Mauritsen, T., B. Stevens, E. Roeckner, T. Crueger, M. Esch, M. Giorgetta, H. Haak, J. Jungclaus, D. Klocke, D. Matei, U. Mikolajewicz, D. Notz, R. Pincus, H. Schmidt L. Tomassini. (2013). Tuning the climate of a global model. Journal of Advances in Modeling Earth Systems. DOI:  10.1029/2012MS000154.
  31. Mearns, L. O. (2010). Quantification of uncertainties of future climate change: challenges and applications. Philosophy of Science, 77(5), 998–1011.CrossRefGoogle Scholar
  32. Moss, R. H., & Schneider, S. H. (2000). Uncertainties in the IPCC TAR: recommendations to lead authors for more consistent assessment and reporting. In R. Pachauri, T. Taniguchi, & K. Tanaka (Eds.), Guidance papers on the cross cutting issues of the third assessment report of the IPCC (pp. 33–51). Geneva: World Meteorological Organization.Google Scholar
  33. Odenbaugh, J. (2003). Values, advocacy, and conservation biology. Environmental Values, 12, 55–69.CrossRefGoogle Scholar
  34. Oppenheimer, M., O’Neill, B., Webster, M., & Argrawala, S. (2007). The limits of consensus. Science, 317, 1505–1506.CrossRefGoogle Scholar
  35. Oreskes, N., & Conway, E. M. (2010). Merchants of doubt. London: Bloomsbury.Google Scholar
  36. Oreskes, N., Stainforth, D., & Smith, L. A. (2010). Adaptation to global warming: Do climate models tell us what we need to know? Philosophy of Science, 77, 1012–1028.CrossRefGoogle Scholar
  37. Pall, P., Aina, T., Stone, D. A., Stott, P. A., Nozawa, T., Hilberts, G. J., Lohmann, D., & Allen, M. (2011). Anthropogenic greenhouse gas contribution to flood risk in England and wales in autumn 2000. Nature, 470, 382–386.CrossRefGoogle Scholar
  38. Parker, W. (2009). Confirmation and adequacy-for-purpose in climate modeling. Aristotelian Society Supplementary Volume, 83(1), 233–249.CrossRefGoogle Scholar
  39. Parker, W. (2010). Predicting weather and climate: uncertainty, ensembles, and probability. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 41(3), 263–272.CrossRefGoogle Scholar
  40. Parker, W. (2014). Values and uncertainty in climate predictions revisited. Studies in History and Philosophy of Science, 46, 24–30.CrossRefGoogle Scholar
  41. Pielke, R. A., Jr. (2004). When scientists politicize science: making sense of controversy over the skeptical environmentalist. Environmental Science and Policy, 7, 405–417.CrossRefGoogle Scholar
  42. Pielke, R. A., Jr. (2007). The honest broker: Making sense of science in policy and practice. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  43. Risbey, J. S. (2007). Subjective elements in climate policy advice. Climatic Change, 85, 11–17.CrossRefGoogle Scholar
  44. Schiermeier, Q. (2010). The real holes in climate science. Nature, 463(7279), 284–7.CrossRefGoogle Scholar
  45. Schneider, S. H. (1997). Integrated assessment of global climate change: transparent rational tool for policymaking or opaque screen hiding value-laden assumptions? Environmental Modeling and Assessment, 2, 229–249.CrossRefGoogle Scholar
  46. Schneider, S. H., & Kunz-Duriseti, K. (2002). Uncertainties and climate change policy. In S. G. Schneider, A. Rosencranz, & J. O. Niles (Eds.), Climate change policy: A survey (pp. 53–87). Washington: Island Press.Google Scholar
  47. Scott, J. M., Rachlow, J. L., Lackey, R. T., Pidgorna, A. B., Aycrigg, J. L., Feldman, G. R., Svancara, L. K., Rupp, D. A., & Stanish, D. I. (2007). Policy advocacy in science: prevalence, perspectives, and implications for conservation biologists. Conservation Biology, 21, 29–35.CrossRefGoogle Scholar
  48. Steel, D. (2010). Epistemic values and the argument from inductive risk. Philosophy of Science, 77, 14–34.CrossRefGoogle Scholar
  49. Stone, D. A., Allen, M. R., Stott, P. A., Pall, P., Min, S. K., Nozawa, T., & Yukimoto, S. (2009). The detection and attribution of human influence on climate. Annual Review of Environmental Resources, 34, 1–16.CrossRefGoogle Scholar
  50. Stott, P. A., M. Allen, N. Christidis, R. Dole, M. Hoerling, C. Huntingford, P. Pall, J. Perlwitz, and D. Stone. (2011). Attribution of weather and climate-related extreme events, WCRP Position Paper on ACE. . Accessed June 2014.
  51. Tang, S., & Dessai, S. (2012). Usable science? The U.K. Climate projections 2009 and decision support for adaptation planning. Weather, Climate, and Society, 4, 300–313.CrossRefGoogle Scholar
  52. van der Sluijs, J. P. (2012). Uncertainty and dissent in climate risk assessment, a post-normal perspective. Nature and Culture, 7(2), 174–195.CrossRefGoogle Scholar
  53. Winsberg, E. (2012). Values and uncertainties in the predictions of global climate models. Kennedy Institute of Ethics Journal, 22(2), 111–137.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of History & PhilosophyMontana State UniversityBozemanUSA

Personalised recommendations