Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A practical philosophy of complex climate modelling

Abstract

We give an overview of the practice of developing and using complex climate models, as seen from experiences in a major climate modelling center and through participation in the Coupled Model Intercomparison Project (CMIP). We discuss the construction and calibration of models; their evaluation, especially through use of out-of-sample tests; and their exploitation in multi-model ensembles to identify biases and make predictions. We stress that adequacy or utility of climate models is best assessed via their skill against more naïve predictions. The framework we use for making inferences about reality using simulations is naturally Bayesian (in an informal sense), and has many points of contact with more familiar examples of scientific epistemology. While the use of complex simulations in science is a development that changes much in how science is done in practice, we argue that the concepts being applied fit very much into traditional practices of the scientific method, albeit those more often associated with laboratory work.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    We use the term ’evaluated’ in this paper (for assessing the adequacy of the model for a certain task) over ’validated’ since the latter term has connotations of ’truth’, which is of limited relevance here.

  2. 2.

    Alternative framings are discussed in detail in Katzav (2014).

  3. 3.

    Katzav (2014) outlines 5 ’views’ of climate model assessement, and this approach is akin to a combination of his description of the adequacy-for-process and ’conservative’ views.

References

  1. Allen, M.R., Mitchell, J.F.B., Stott, P.A. (2013). Test of a decadal climate forecast. Nature Geoscience, 6, 243–244. doi:10.1038/ngeo1788.

  2. Betz, G. (2013). In defence of the value free ideal. European Journal for Philosophy of Science, 3, 207–220. doi:10.1007/s13194-012-0062-x.

  3. Bi, D., Dix, M., Marsland, S., O’Farrell, S., Rashid, H., Uotila, P., Hirst, A., Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah, N., Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R., Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies, S., Hill, R., Harris, C., Puri, K. (2013). The ACCESS coupled model: description, control climate and evaluation. Australian Meteorological and Oceanographic Journal, 63, 41–64.

  4. Bodas-Salcedo, A., Webb, M.J., Bony, S., Chepfer, H., Dufresne, J.L., Klein, S.A., Zhang, Y., Marchand, R., Haynes, J.M., Pincus, R., John, V.O. (2011). COSP satellite simulation software for model assessment. Bulletin of the American Meteorological Society, 92 (8), 1023–1043. doi:10.1175/2011BAMS2856.1.

  5. Box, G. (1979). Robustness in the Strategy of Scientific Model Building. MRC technical summary report, University of Wisconsin–Madison, Mathematics Research Center, Defense Technical Information Center.

  6. Briggs, T.S., & Rauscher, W.C. (1973). An oscillating iodine clock. Journal of Chemical Education, 50, 496.

  7. Broer, H., Simó, C., Vitolo, R. (2002). Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing. Nonlinearity, 15, 1205–1268. doi:10.1088/0951-7715/15/4/312.

  8. Cesana, G., & Chepfer, H. (2012). How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models. Geophysical Research Letters, 39, L20803. doi:10.1029/2012GL053153.

  9. Church, J.A., White, N.J., Konikow, L.F., Domingues, C.M., Cogley, J.G., Rignot, E., Gregory, J.M., van den Broeke, M.R., Monaghan, A.J., Velicogna, I. (2011). Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophysical Research Letters, 38, L18601. doi:10.1029/2011GL048794.

  10. Collins, M., Knutti, R., Arblaster, J., Dufresne, J.L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J., Wehner, M. (2013). Long-term climate change: Projections, commitments and irreversibility. In T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. Midgley (Eds.) , Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  11. Cubasch, U., Wuebbles, D., Chen, D., Facchini, M.C., Frame, D., Mahowald, N., Winther, J.G. (2013). Introduction. In T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. Midgley (Eds.), Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  12. Deser, C., Knutti, R., Solomon, S., Phillips, A. (2012). Communication of the role of natural variability in future North American climate. Nature Climate Change, 2, 775–779. doi:10.1038/nclimate1562.

  13. Douglas, H. (2000). Inductive risk and values in science. Philosophy of Science, 67, 559–579. doi:10.2307/188707.

  14. Edwards, P.N. (2010). A Vast Machine. Cambridge, MA: MIT Press.

  15. Evans, M.N., Tolwinski-Ward, S.E., Thompson, D.M., Anchukaitis, K.J. (2013). Applications of proxy system modeling in high resolution paleoclimatology. Quaternary Science Reviews, 76, 16–28.

  16. Farman, J.C., Gardiner, B.G., Shanklin, J.D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClO x /NO x interaction. Nature, 315, 207–210. doi:10.1038/315207a0.

  17. Feynman, R.P. (1965). The character of physical law: The 1964 Messenger Lectures. Cambridge MA: MIT Press.

  18. Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., Rummukaine, M. (2013). Evaluation of climatemodels. In T.F. Stocker, D. Qin, G.K. Plattner,M. Tignor, S.K. Allen, J. Boschung, A. Nauels,Y. Xia, V. Bex, P.Midgley (Eds.), Climate Change 2013: The physical science basis. Contribution of Working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  19. Forster, P.M., Andrews, T., Good, P., Gregory, J.M., Jackson, L.S., Zelinka, M. (2013). Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. Journal of Geophysical Research Atmospheres, 118, 1139–1150. doi:10.1002/jgrd.50174.

  20. Frame, D.J., Faull, N.E., Joshi, M.M., Allen, M.R. (2007). Probabilistic climate forecasts and inductive problems. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 365 (1857), 1971–1992. doi:10.1098/rsta.2007.2069.

  21. Frigg, R., & Reiss, J. (2009). The philosophy of simulation: hot new issues or same old stew? Synthese, 169 (3), 593–613. doi:10.1007/s11229-008-9438-z.

  22. Gates, W.L., Boyle, J.S., Covey, C., Dease, C.G., Doutriaux, C.M., Drach, R.S., Fiorino, M., Gleckler, P.J., Hnilo, J.J., Marlais, S.M., Phillips, T.J., Potter, G.L., Santer, B.D., Sperber, K.R., Taylor, K.E., Williams, D.N. (1999). An overview of the results of the Atmospheric Model Intercomparison Project (AMIP1). Bulletin of the American Meteorological Society, 80, 29–55.

  23. Hall, A., & Qu, X. (2006). Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophysical Research Letters, 33. doi:10.1029/2005GL025,127,L03,502.

  24. Hansen, J., Fung, I., Lacis, A., Rind, D., Lebedeff, S., Ruedy, R., Russell, G., Stone, P. (1988). Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model. Journal of Geophysical Research, 93, 9341–9364.

  25. Hansen, J., Lacis, A., Ruedy, R., Sato, M. (1992). Potential climate impact of Mount Pinatubo eruption. Geophysical Research Letters, 19, 215–218.

  26. Hargreaves, J.C. (2010). Skill and uncertainty in climate models. Wiley Interdisciplinary Reviews: Climate Change, 1, 556–564.

  27. von Hayek, F.A. (1974). Prize lecture: the pretence of knowledge. http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1974/hayek-lecture.html. Accessed 21 Oct 2013.

  28. Held, I.M. (2005). The gap between simulation and understanding in climate modeling. Bulletin of the American Meteorological Society, 86, 1609–1614.

  29. Heymann, M. (2010). Understanding and misunderstanding computer simulation: the case of atmospheric and climate science - an introduction. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 41 (3), 193–200. doi:10.1016/j.shpsb.2010.08.001.

  30. Humphreys, P. (2009). The philosophical novelty of computer simulation methods. Synthese, 169 (3), 615–626. doi:10.1007/s11229-008-9435-2.

  31. Hwang, Y.T., & Frierson, D.M.W. (2013). Link between the double-Intertropical convergence zone problem and cloud biases over the Southern Ocean. Proceedings of the National Academy of Sciences, 110, 4935–4940. doi:10.1073/pnas.1213302110.

  32. Jaynes, E.T. (2003). Probability theory: the logic of science. Cambridge, 727 pp.

  33. Katzav, J. (2014). The epistemology of climate models and some of its implications for climate science and the philosophy of science. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 46, 228–238. doi:10.1016/j.shpsb.2014.03.001.

  34. Katzav, J., Dijkstra, H.A., de Laat, A.T.J. (2012). Assessing climate model projections: state of the art and philosophical reflections. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 43, 258–276. doi:10.1016/j.shpsb.2012.07.002.

  35. Keenlyside, N.S., Latif, M., Jungclaus, J., Kornblueh, L., Roeckner, E. (2008). Advancing decadal-scale climate prediction in the north atlantic sector. Nature, 453 (7191), 84–88.

  36. Kiehl, J.T. (2007). Twentieth century climate model response and climate sensitivity. Geophysical Research Letters, 34, L22710. doi:10.1029/2007GL031383.

  37. Kim, D., Sobel, A.H., Del Genio, A.D., Chen, Y.H., Camargo, S.J., Yao, M.S., Kelley, M., Nazarenko, L. (2012). The tropical subseasonal variability simulated in the NASA GISS general circulation model. Journal of Climatology, 25, 4641–4659. doi:10.1175/JCLI-D-11-00447.1.

  38. Knutson, T., & Tuleya, R.E. (2005). Reply. Journal of Climate, 18, 5183–5187. doi:10.1175/JCLI3593.1.

  39. Knutti, R. (2008). Should we believe model predictions of future climate change? Philosophical Transactions of the Royal Society A, 366, 4647–4664. doi:10.1098/rsta.2008.0169.

  40. Knutti, R., Abramowitz, G., Collins, M., Eyring, V., Gleckler, P.J., Hewitson, B., Mearns, L. (2010). Good practice guidance paper on assessing and combining multi model climate projections. Tech. rep., IPCC Working Group I Technical Support Unit, University of Bern, Bern, Switzerland. In T. F. Stocker, D. Qin, G. -K, Plattner, M. Tignor, P.M. Midgley (Eds.), Meeting report of the Intergovernmental Panel on Climate Change expert meeting on assessing and combining multi model climate projections.

  41. Knutti, R., Masson, D., Gettelman, A. (2013). Climate model genealogy: Generation CMIP5 and how we got there. Geophysical Research Letters, 40. doi:10.1002/grl.50256.

  42. Köhler, P., Bintanja, R., Fischer, H., Joos, F., Knutti, R., Lohmann, G., Masson-Delmotte, V. (2010). What caused Earth’s temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quaternary Science Reviews, 29, 129–145. doi:10.1016/j.quascirev.2009.09.026.

  43. Lenhard, J., & Winsberg, E. (2010). Holism, entrenchment, and the future of climate model pluralism. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 41, 253–262. doi:10.1016/j.shpsb.2010.07.001.

  44. Levitus, S., Antonov, J.I., Boyer, T.P., Stephens, C. (2000). Warming of the world ocean. Science, 287, 2225–2228. doi:10.1126/science.287.5461.2225.

  45. Lidin, S. (2013). Interview: 2013 Nobel Prize in Chemistry announcement. http://www.youtube.com/watch?v=igfed5l66Qo. Accessed 21 Oct 2013.

  46. Lloyd, E.A. (1987). Confirmation of ecological and evolutionary models. Biology and Philosophy, 2, 277–293.

  47. Lloyd, E.A. (2010). Confirmation and robustness of climate models. Philosophy of Science, 77, 971–984.

  48. Lorenz, E.N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130–141. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

  49. Manabe, S., Spelman, M.J., Stouffer, R.J. (1992). Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part II: Seasonal response. Journal of Climate, 5, 105–126. doi:10.1175/1520-0442(1992)005<0105:TROACO>2.0.CO;2.

  50. Masson, D., & Knutti, R. (2011). Climate model genealogy. Geophysical Research Letters, 38, L08703. doi:10.1029/2011GL046864.

  51. Massonnet, F., Fichefet, T., Goosse, H., Bitz, C.M., Philippon-Berthier, G., Holland, M., Barriat, P.Y. (2012). Constraining projections of summer Arctic sea ice. Cryosphere, 6, 1383–1394. doi:10.5194/tc-6-1383-2012.

  52. Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta, M., Haak, H., Jungclaus, J., Klocke, D., Matei, D., Mikolajewicz, U., Notz, D., Pincus, R., Schmidt, H., Tomassini, L. (2012). Tuning the climate of a global model. Journal of Advances in Modeling Earth Systems, 4, M00A01. doi:10.1029/2012MS000154.

  53. Mears, C.A., Schabel, M., Wentz, F.J. (2003). A reanalysis of the MSU Channel 2 tropospheric temperature record. Journal of Climatology, 16, 3650–3664.

  54. National Research Council Committee on Abrupt Climate Change (2002). Abrupt Climate Change: Inevitable Surprises. The National Academies Press. http://www.nap.edu/openbook.php?record_id=10136.

  55. Noyes, R.M., & Furrow, S.D. (1982). The oscillatory Briggs-Rauscher reaction. 3. A skeleton mechanism for oscillations. Journal of the American Chemical Society, 104, 45–48. doi:10.1021/ja00365a011.

  56. Parker, W. (2013a). Computer simulation. In: S. Psillos, M. Curd (Eds.), The Routledge Companion to Philosophy of Science, 2nd edn. Routledge.

  57. Parker, W. (2013b). Values and uncertainties in climate prediction, revisited. Studies in History and Philosophy of Science Part A pp doi:10.1016/j.shpsa.2013.11.003.

  58. President’s Information Technology Advisory Committee (PITAC) (2005). Report to the President, 2005, Computational Science: Ensuring Americas Competitiveness. http://www.csci.psu.edu/docs/computational.pdf. Accessed 21 Oct 2013.

  59. Reichler, T., & Kim, J. (2008). How well do coupled models simulate today’s climate? Bulletin of the American Meteorological Society, 89, 303–311.

  60. Rind, D.H., & Peteet, D. (1985). Terrestrial conditions at the last glacial maximum and CLIMAP sea surface temperature estimates: Are they consistent? Quaternary Research, 24, 1–22.

  61. Rougier, J.C. (2007). Probabilistic inference for future climate using an ensemble of climate model evaluations. Climatic Change, 81, 247–264. doi:10.1007/s10584-006-9156-9.

  62. Rumsfeld, D. (2002). Dept. of Defense, News briefing, February, 12. http://www.defense.gov/transcripts/transcript.aspx?transcriptid=2636. Accessed Dec 5, 2012.

  63. Schmidt, G.A., & Mysak, L.A. (1996). The stability of a zonally averaged thermohaline circulation model. Tellus, 48A, 158–178.

  64. Schmidt, G.A., LeGrande, A., Hoffmann, G. (2007). Water isotope expressions of intrinsic and forced variability in a coupled ocean-atmosphere model. Journal of Geophysical Research, 112, D10103. doi:10.1029/2006JD007781.

  65. Schmidt, G.A., Annan, J.D., Bartlein, P.J., Cook, B.I., Guilyardi, E., Hargreaves, J.C., Harrison, S.P., Kageyama, M., LeGrande, A.N., Konecky, B., Lovejoy, S., Mann, M.E., Masson-Delmotte, V., Risi, C., Thompson, D., Timmermann, A., Tremblay, L.B., Yiou, P. (2014a). Using palaeo-climate comparisons to constrain future projections in CMIP5. Climate of the Past, 10, 221–250. doi:10.5194/cp-10-221-2014.

  66. Schmidt, G.A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G.L., Aleinov, I., Bauer, M., Bauer, S., Bhat, M.K., Bleck, R., Canuto, V., Chen, Y., Cheng, Y., Clune, T.L., Del Genio, A., de Fainchtein, R., Faluvegi, G., Hansen, J.E., Healy, R.J., Kiang, N.Y., Koch, D., Lacis, A.A., LeGrande, A.N., Lerner, J., Lo, K.K., Matthews, E.E., Menon, S., Miller, R.L., Oinas, V., Oloso, A.O., Perlwitz, J., Puma, M.J., Putman, W.M., Rind, D., Romanou, A., Sato, M., Shindell, D.T., Sun, S., Syed, R., Tausnev, N., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M.S., Zhang, J. (2014b). Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. Journal of Advances in Modeling Earth Systems, 6, 141–184. doi:10.1002/2013MS000265.

  67. Sherwood, S.C. (1999). Feedbacks in a simple prognostic tropical climate model. Journal of the Atmospheric Sciences, 56, 2178–2200. doi:10.1175/1520-0469(1999)056<2178:FIASPT>2.0.CO;2.

  68. Stainforth, D.A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D.J., Kettleborough, J.A., Knight, S., Martin, A., Murphy, J.M., Piani, C., Sexton, D., Smith, L.A., Spicer, R.A., Thorpe, A.J., Allen, M.R. (2005). Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433, 403–406.

  69. Stanford, K. (2013). Underdetermination of scientific theory. In E. N. Zalta (Ed.) The Stanford encyclopedia of philosophy (Winter 2013 Edition). http://plato.stanford.edu/archives/win2013/entries/scientific-underdetermination/.

  70. Steele, K., & Werndl, C. (2013). Climate models, calibration, and confirmation. British Journal for the Philosophy of Science, 64, 609–635. doi:10.1093/bjps/axs036.

  71. Stephens, G.L., Li, J., Wild, M., Clayson, C.A., Loeb, N., Kato, S., L’Ecuyer, T., Stackhouse, P.W., Lebsock, M., Andrews, T. (2012). An update on Earth’s energy balance in light of the latest global observations. Nature Geoscience, 5, 691–696. doi:10.1038/ngeo1580.

  72. Stocker, T., Dahe, Q., Plattner G.K. (Eds.) (2013). Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

  73. Stroeve, J., Holland, M.M., Meier, W., Scambos, T., Serreze, M. (2007). Arctic sea ice decline: Faster than forecast. Geophysical Research Letters, 34, L09501. doi:10.1029/2007GL029703.

  74. Stroeve, J.C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., Meier, W.N. (2012). Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39, L16502. doi:10.1029/2012GL052676.

  75. Swanson, K.L. (2013). Emerging selection bias in large-scale climate change simulations. Geophysical Research Letters, 40, 3184–3188. doi:10.1002/grl.50562.

  76. Taylor, K.E., Stouffer, R., Meehl, G. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93, 485–498. doi:10.1175/BAMS-D-11-00094.1.

  77. Tebaldi, C., & Knutti, R. (2007). The use of the multi-model ensemble in probabilistic climate projections in probabilistic climate projections. Society, 365 (1857), 2053–2075.

  78. Thorne, P.W., Lanzante, J.R., Peterson, T.C., Seidel, D.J., Shine, K.P. (2011). Tropospheric temperature trends: History of an ongoing controversy. WIREs Climate Change, 2, 66–88. doi:10.1002/wcc.80.

  79. van Oldenborgh, GJ, Doblas Reyes, F.J., Drijfhout, S.S., Hawkins, E. (2013). Reliability of regional climate model trends. Environmental Research Letters, 8 (1), 014,055. doi:10.1088/1748-9326/8/1/014055.

  80. Vardi, M.Y. (2010). Science has only two legs. Communications of the ACM, 53, 5. doi:10.1145/1810891.1810892.

  81. Webb, M., Senior, C., Bony, S., Morcrette, J.J. (2001). Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dynamics, 17, 905–922.

  82. Winsberg, E. (2003). Simulated experiments: Methodology for a virtual world. Philosophy of Science, 70 (1), 105–125. doi:10.1086/367872.

  83. Winsberg, E. (2012). Values and uncertainties in the predictions of Global climate models. Kennedy Institute of Ethics Journal, 22, 111–137. doi:10.1353/ken.2012.0008.

Download references

Acknowledgments

This paper has benefited greatly from extensive discussions with Wendy Parker and Joel Katzav, two anonymous reviews and from conversations at a workshop on climate model philosophy in Eindhoven in November 2013.

Author information

Correspondence to Gavin A. Schmidt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schmidt, G.A., Sherwood, S. A practical philosophy of complex climate modelling. Euro Jnl Phil Sci 5, 149–169 (2015). https://doi.org/10.1007/s13194-014-0102-9

Download citation

Keywords

  • Climate models
  • Complex simulation
  • Model skill