Design sans adaptation

Abstract

Design thinking in general, and optimality modeling in particular, have traditionally been associated with adaptationism—a research agenda that gives pride of place to natural selection in shaping biological characters. Our goal is to evaluate the role of design thinking in non-evolutionary analyses. Specifically, we focus on research into abstract design principles that underpin the functional organization of extant organisms. Drawing on case studies from engineering-inspired approaches in biology we show how optimality analysis, and other design-related methods, play a specific methodological role that is tangential to the study of adaptation. To account for the role of these reasoning strategies in contemporary biology, we therefore suggest a reevaluation of the connection between design thinking and adaptationism.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    An early formulation along similar lines can be found in Lauder (1982, p. 58): “I define design as the organization of biological structure in relation to an hypothesized function.” Lauder explicitly distinguishes ‘design’ from ‘adaptation’, which “is restricted to features that have arisen by means of natural selection.”

  2. 2.

    Calcott (2014) discusses the role of design thinking in non-adaptationist evolutionary analysis. We are in agreement with much of what Calcott says, but we will not dwell on the connections (and differences) to our paper.

  3. 3.

    While some researchers have questioned the ability of biological research to identify the design principles actually operative in a given organism (Marom et al. 2009), there are large-scale projects devoted to evaluating the success of procedures for reverse engineering (Stolovitzky et al. 2007). Our concern, however, is not with the potential for success in these projects but with the conceptual implications of this research strategy.

  4. 4.

    These two facts are linked: part of the interest in this system stems from the (hotly contested) role of stem cells in carcinogenesis.

  5. 5.

    Nowak et al. regard cancer as a somatic evolutionary process, i.e., as involving natural selection among cells within the body. There is an ongoing discussion both among biologists and in recent philosophy about whether cancer is rightly viewed as form of intra-bodily evolution (Germain 2012). This issue does not affect our argument. To forestall confusion, we will not describe cancer in evolutionary terms.

  6. 6.

    Itzkovitz et al. offer some (non-evolutionary) support for this. We discuss this aspect below—see Section 4.2.

  7. 7.

    Thus, they do not test—nor suggest tests—for an evolutionary hypothesis concerning crypt development.

  8. 8.

    For further examples, see Shinar and Feinberg (2011).

References

  1. Acar, M., Pando, B. F., Arnold, F. H., Elowitz, M. B., & van Oudenaarden, A. (2010). A general mechanism for network-dosage compensation in gene circuits. Science, 329(5999), 1656–1660. doi:10.1126/science.1190544.

    Article  Google Scholar 

  2. Alon, U. (2003). Biological networks: the tinkerer as an engineer. Science, 301(5641), 1866–1867. doi:10.1126/science.1089072.

    Article  Google Scholar 

  3. Alon, U. (2007). An introduction to systems biology: design principles of biological circuits (Vol. 10). Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  4. Ben-Zvi, D., Ben-Zion, S., & Barkai, N. (2011). Scaling of morphogen gradients. Current Opinion in Genetics & Development, 21(6), 704–710. doi:10.1016/J.Gde.2011.07.011.

    Article  Google Scholar 

  5. Calcott, B. (2014). Engineering and evolvability. Biology and Philosophy, 29(3), 293–313. doi:10.1007/s10539-014-9425-3.

    Article  Google Scholar 

  6. Chikofsky, E. J., & Cross, J. H. (1990). Reverse engineering and design recovery—a taxonomy. IEEE Software, 7(1), 13–17. doi:10.1109/52.43044.

    Article  Google Scholar 

  7. Csete, M. E., & Doyle, J. C. (2002). Reverse engineering of biological complexity. Science, 295(5560), 1664–1669. doi:10.1126/science.1069981.

    Article  Google Scholar 

  8. Cummins, R. (1975). Functional analysis. Journal of Philosophy, 72, 741–765.

    Article  Google Scholar 

  9. Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.

    Google Scholar 

  10. Dennett, D. C. (1995). Darwin's dangerous idea: evolution and the meanings of life. New York: Simon & Schuster.

    Google Scholar 

  11. Eldar, A., Dorfman, R., Weiss, D., Ashe, H., Shilo, B.-Z., & Barkai, N. (2002). Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature, 419(6904), 304–308. doi:10.1038/nature01061.

    Article  Google Scholar 

  12. Frank, S. A., Iwasa, Y., & Nowak, M. A. (2003). Patterns of cell division and the risk of cancer. Genetics, 163(4), 1527–1532.

    Google Scholar 

  13. Germain, P.-L. (2012). Cancer cells and adaptive explanations. Biology & Philosophy, 27(6), 785–810.

    Article  Google Scholar 

  14. Godfrey-Smith, P. (1994). A modern history theory of functions. Noûs, 28(3), 344–362.

    Article  Google Scholar 

  15. Godfrey-Smith, P. (2001). Three kinds of adaptationism. In S. H. Orzack & E. Sober (Eds.), Adaptatinism and optamality (pp. 335–357). Cambridge: Cambridge University Press.

    Google Scholar 

  16. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London Series B, 205, 581–598.

    Article  Google Scholar 

  17. Griffiths, P. E. (1996). The historical turn in the study of adaptation. The British Journal for the Philosophy of Science, 47(4), 511–532.

    Article  Google Scholar 

  18. Hartwell, L. H., Hopfield, J. J., Leibler, S., & Murray, A. W. (1999). From molecular to modular cell biology. Nature, 402, C47–C52.

    Article  Google Scholar 

  19. Humphries, A., & Wright, N. A. (2008). Colonic crypt organization and tumorigenesis. Nature Reviews Cancer, 8(6), 415–424.

    Article  Google Scholar 

  20. Itzkovitz, S., Blat, I. C., Jacks, T., Clevers, H., & van Oudenaarden, A. (2012). Optimality in the development of intestinal crypts. Cell, 148(3), 608–619. doi:10.1016/J.Cell.2011.12.025.

    Article  Google Scholar 

  21. Jacob, F. (1977). Evolution and tinkering. Science, 196(4295), 1161–1166.

    Article  Google Scholar 

  22. Jaeger, J., & Sharpe, J. (2014). On the concept of mechanism in development. In M. Alessandro & P. Thomas (Eds.), Towards a theory of development (pp. 56–78). Oxford: Oxford University Press.

    Google Scholar 

  23. Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11), 826–837. doi:10.1038/nrg1471.

    Article  Google Scholar 

  24. Lauder, G. V. (1982). Historical biology and the problem of design. Journal of Theoretical Biology, 97(1), 57–67. doi:10.1016/0022-5193(82)90276-4.

    Article  Google Scholar 

  25. Lazebnik, Y. (2002). Can a biologist fix a radio? Or, what I learned while studying apoptosis. Cancer Cell, 2(3), 179–182. doi:10.1016/S1535-6108(02)00133-2.

    Article  Google Scholar 

  26. Lewens, T. (2004). Organisms and artifacts: design in nature and elsewhere. Cambridge: MIT Press.

    Google Scholar 

  27. Lynch, M. (2007). The evolution of genetic networks by non-adaptive processes. Nature Reviews Genetics, 8(10), 803–813.

    Article  Google Scholar 

  28. Marom, S., Meir, R., Braun, E., Gal, A., Kermany, E., & Eytan, D. (2009). On the precarious path of reverse neuro-engineering. Frontiers in Computational Neuroscience, 3, 5. doi:10.3389/neuro.10.005.2009.

    Google Scholar 

  29. Millikan, R. G. (1989). In defense of proper functions. Philosophy of Science, 56, 288–302.

    Article  Google Scholar 

  30. Neander, K. (1991). Functions as selected effects: the conceptual analyst’s defense. Philosophy of Science, 58, 168–184.

    Article  Google Scholar 

  31. Nowak, M. A. (2006). Evolutionary dynamics: exploring the equations of life. Cambridge: Belknap Press of Harvard University Press.

    Google Scholar 

  32. Nowak, M. A., Michor, F., & Iwasa, Y. (2003). The linear process of somatic evolution. Proceedings of the National Academy of Sciences, 100(25), 14966–14969. doi:10.1073/pnas.2535419100.

    Article  Google Scholar 

  33. Orzack, S. H., & Sober, E. (1994). Optimality models and the test of adaptationism. The American Naturalist, 143, 361–380.

    Article  Google Scholar 

  34. Orzack, S. H., & Sober, E. (2001). Adaptationism and optimality (Cambridge studies in philosophy and biology). Cambridge: Cambridge University Press.

    Google Scholar 

  35. Parker, G. A., & Maynard-Smith, J. (1990). Optimality theory in evolutionary biology. Nature, 348, 27–33.

    Article  Google Scholar 

  36. Poyatos, J. F. (2012). On the search for design principles in biological systems. Advances in Experimental Medicine and Biology, 751, 183–193. doi:10.1007/978-1-4614-3567-9_9.

    Article  Google Scholar 

  37. Resnik, D. (1997). Adaptationism: hypothesis or heuristic? Biology & Philosophy, 12(1), 39–50.

    Article  Google Scholar 

  38. Richardson, R. C. (2007). Evolutionary psychology as maladapted psychology (Life and mind). Cambridge: MIT Press.

    Google Scholar 

  39. Salvado, B., Karathia, H., Chimenos, A., Vilaprinyo, E., Omholt, S., Sorribas, A., & Alves, R. (2011). Methods for and results from the study of design principles in molecular systems. Mathematical Biosciences, 231(1), 3–18. doi:10.1016/j.mbs.2011.02.005.

    Article  Google Scholar 

  40. Savageau, M. A. (2001). Design principles for elementary gene circuits: elements, methods, and examples. Chaos, 11(1), 142–159. doi:10.1063/1.1349892.

    Article  Google Scholar 

  41. Shinar, G., & Feinberg, M. (2011). Design principles for robust biochemical reaction networks: what works, what cannot work, and what might almost work. Mathematical Biosciences, 231(1), 39–48. doi:10.1016/j.mbs.2011.02.012.

    Article  Google Scholar 

  42. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J., & Doyle, J. (2004). Robustness of cellular functions. Cell, 118(6), 675–685. doi:10.1016/j.cell.2004.09.008.

    Article  Google Scholar 

  43. Stolovitzky, G. A., Monroe, D., & Califano, A. (2007). Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Annals of the New York Academy of Sciences, 1115, 1–22. doi:10.1196/annals.1407.021.

    Article  Google Scholar 

  44. Tyson, J. J., Chen, K. C., & Novák, B. (2003). Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Current Opinion in Cell Biology, 15(2), 221–231. doi:10.1016/s0955-0674(03)00017-6.

    Article  Google Scholar 

  45. van der Flier, L. G., & Clevers, H. (2009). Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annual Review of Physiology, 71, 241–260. doi:10.1146/annurev.physiol.010908.163145.

    Article  Google Scholar 

  46. Wiener, N. (1948). Cybernetics: Or, control and communication in the animal and the machine. New York: Wiley.

    Google Scholar 

  47. Williams, G. C. (1966). Adaptation and natural selection. A critique of some current evolutionary thought. Princeton: Princeton University Press.

    Google Scholar 

  48. Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings: piecewise approximations to reality. Cambridge: Harvard University Press.

    Google Scholar 

  49. Wright, L. (1976). Teleological explanations. Berkeley: University of California Press.

    Google Scholar 

Download references

Acknowledgments

We wish to thank Shalev Itzkovitz for oral discussion and written correspondence as well as two anonymous reviewers for helpful comments. Sara Green gratefully acknowledges support from the Danish Research Council for Independent Research/Humanities for the grant Philosophy of Contemporary Science in Practice.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sara Green.

Additional information

Sara Green, Arnon Levy, and William Bechtel contributed equally to this work.

The paper was written while this author was a Polonsky Postdoctoral Fellow at the Van Leer Jerusalem Institute.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Green, S., Levy, A. & Bechtel, W. Design sans adaptation. Euro Jnl Phil Sci 5, 15–29 (2015). https://doi.org/10.1007/s13194-014-0096-3

Download citation

Keywords

  • Design thinking
  • Adaptationism
  • Reverse engineering
  • Heuristic
  • Optimality