Advertisement

European Journal for Philosophy of Science

, Volume 5, Issue 1, pp 15–29 | Cite as

Design sans adaptation

  • Sara GreenEmail author
  • Arnon Levy
  • William Bechtel
Original paper in Philosophy of Biology

Abstract

Design thinking in general, and optimality modeling in particular, have traditionally been associated with adaptationism—a research agenda that gives pride of place to natural selection in shaping biological characters. Our goal is to evaluate the role of design thinking in non-evolutionary analyses. Specifically, we focus on research into abstract design principles that underpin the functional organization of extant organisms. Drawing on case studies from engineering-inspired approaches in biology we show how optimality analysis, and other design-related methods, play a specific methodological role that is tangential to the study of adaptation. To account for the role of these reasoning strategies in contemporary biology, we therefore suggest a reevaluation of the connection between design thinking and adaptationism.

Keywords

Design thinking Adaptationism Reverse engineering Heuristic Optimality 

Notes

Acknowledgments

We wish to thank Shalev Itzkovitz for oral discussion and written correspondence as well as two anonymous reviewers for helpful comments. Sara Green gratefully acknowledges support from the Danish Research Council for Independent Research/Humanities for the grant Philosophy of Contemporary Science in Practice.

References

  1. Acar, M., Pando, B. F., Arnold, F. H., Elowitz, M. B., & van Oudenaarden, A. (2010). A general mechanism for network-dosage compensation in gene circuits. Science, 329(5999), 1656–1660. doi: 10.1126/science.1190544.CrossRefGoogle Scholar
  2. Alon, U. (2003). Biological networks: the tinkerer as an engineer. Science, 301(5641), 1866–1867. doi: 10.1126/science.1089072.CrossRefGoogle Scholar
  3. Alon, U. (2007). An introduction to systems biology: design principles of biological circuits (Vol. 10). Boca Raton: Chapman & Hall/CRC.Google Scholar
  4. Ben-Zvi, D., Ben-Zion, S., & Barkai, N. (2011). Scaling of morphogen gradients. Current Opinion in Genetics & Development, 21(6), 704–710. doi: 10.1016/J.Gde.2011.07.011.CrossRefGoogle Scholar
  5. Calcott, B. (2014). Engineering and evolvability. Biology and Philosophy, 29(3), 293–313. doi: 10.1007/s10539-014-9425-3.CrossRefGoogle Scholar
  6. Chikofsky, E. J., & Cross, J. H. (1990). Reverse engineering and design recovery—a taxonomy. IEEE Software, 7(1), 13–17. doi: 10.1109/52.43044.CrossRefGoogle Scholar
  7. Csete, M. E., & Doyle, J. C. (2002). Reverse engineering of biological complexity. Science, 295(5560), 1664–1669. doi: 10.1126/science.1069981.CrossRefGoogle Scholar
  8. Cummins, R. (1975). Functional analysis. Journal of Philosophy, 72, 741–765.CrossRefGoogle Scholar
  9. Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.Google Scholar
  10. Dennett, D. C. (1995). Darwin's dangerous idea: evolution and the meanings of life. New York: Simon & Schuster.Google Scholar
  11. Eldar, A., Dorfman, R., Weiss, D., Ashe, H., Shilo, B.-Z., & Barkai, N. (2002). Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature, 419(6904), 304–308. doi: 10.1038/nature01061.CrossRefGoogle Scholar
  12. Frank, S. A., Iwasa, Y., & Nowak, M. A. (2003). Patterns of cell division and the risk of cancer. Genetics, 163(4), 1527–1532.Google Scholar
  13. Germain, P.-L. (2012). Cancer cells and adaptive explanations. Biology & Philosophy, 27(6), 785–810.CrossRefGoogle Scholar
  14. Godfrey-Smith, P. (1994). A modern history theory of functions. Noûs, 28(3), 344–362.CrossRefGoogle Scholar
  15. Godfrey-Smith, P. (2001). Three kinds of adaptationism. In S. H. Orzack & E. Sober (Eds.), Adaptatinism and optamality (pp. 335–357). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London Series B, 205, 581–598.CrossRefGoogle Scholar
  17. Griffiths, P. E. (1996). The historical turn in the study of adaptation. The British Journal for the Philosophy of Science, 47(4), 511–532.CrossRefGoogle Scholar
  18. Hartwell, L. H., Hopfield, J. J., Leibler, S., & Murray, A. W. (1999). From molecular to modular cell biology. Nature, 402, C47–C52.CrossRefGoogle Scholar
  19. Humphries, A., & Wright, N. A. (2008). Colonic crypt organization and tumorigenesis. Nature Reviews Cancer, 8(6), 415–424.CrossRefGoogle Scholar
  20. Itzkovitz, S., Blat, I. C., Jacks, T., Clevers, H., & van Oudenaarden, A. (2012). Optimality in the development of intestinal crypts. Cell, 148(3), 608–619. doi: 10.1016/J.Cell.2011.12.025.CrossRefGoogle Scholar
  21. Jacob, F. (1977). Evolution and tinkering. Science, 196(4295), 1161–1166.CrossRefGoogle Scholar
  22. Jaeger, J., & Sharpe, J. (2014). On the concept of mechanism in development. In M. Alessandro & P. Thomas (Eds.), Towards a theory of development (pp. 56–78). Oxford: Oxford University Press.CrossRefGoogle Scholar
  23. Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11), 826–837. doi: 10.1038/nrg1471.CrossRefGoogle Scholar
  24. Lauder, G. V. (1982). Historical biology and the problem of design. Journal of Theoretical Biology, 97(1), 57–67. doi: 10.1016/0022-5193(82)90276-4.CrossRefGoogle Scholar
  25. Lazebnik, Y. (2002). Can a biologist fix a radio? Or, what I learned while studying apoptosis. Cancer Cell, 2(3), 179–182. doi: 10.1016/S1535-6108(02)00133-2.CrossRefGoogle Scholar
  26. Lewens, T. (2004). Organisms and artifacts: design in nature and elsewhere. Cambridge: MIT Press.Google Scholar
  27. Lynch, M. (2007). The evolution of genetic networks by non-adaptive processes. Nature Reviews Genetics, 8(10), 803–813.CrossRefGoogle Scholar
  28. Marom, S., Meir, R., Braun, E., Gal, A., Kermany, E., & Eytan, D. (2009). On the precarious path of reverse neuro-engineering. Frontiers in Computational Neuroscience, 3, 5. doi: 10.3389/neuro.10.005.2009.Google Scholar
  29. Millikan, R. G. (1989). In defense of proper functions. Philosophy of Science, 56, 288–302.CrossRefGoogle Scholar
  30. Neander, K. (1991). Functions as selected effects: the conceptual analyst’s defense. Philosophy of Science, 58, 168–184.CrossRefGoogle Scholar
  31. Nowak, M. A. (2006). Evolutionary dynamics: exploring the equations of life. Cambridge: Belknap Press of Harvard University Press.Google Scholar
  32. Nowak, M. A., Michor, F., & Iwasa, Y. (2003). The linear process of somatic evolution. Proceedings of the National Academy of Sciences, 100(25), 14966–14969. doi: 10.1073/pnas.2535419100.CrossRefGoogle Scholar
  33. Orzack, S. H., & Sober, E. (1994). Optimality models and the test of adaptationism. The American Naturalist, 143, 361–380.CrossRefGoogle Scholar
  34. Orzack, S. H., & Sober, E. (2001). Adaptationism and optimality (Cambridge studies in philosophy and biology). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  35. Parker, G. A., & Maynard-Smith, J. (1990). Optimality theory in evolutionary biology. Nature, 348, 27–33.CrossRefGoogle Scholar
  36. Poyatos, J. F. (2012). On the search for design principles in biological systems. Advances in Experimental Medicine and Biology, 751, 183–193. doi: 10.1007/978-1-4614-3567-9_9.CrossRefGoogle Scholar
  37. Resnik, D. (1997). Adaptationism: hypothesis or heuristic? Biology & Philosophy, 12(1), 39–50.CrossRefGoogle Scholar
  38. Richardson, R. C. (2007). Evolutionary psychology as maladapted psychology (Life and mind). Cambridge: MIT Press.Google Scholar
  39. Salvado, B., Karathia, H., Chimenos, A., Vilaprinyo, E., Omholt, S., Sorribas, A., & Alves, R. (2011). Methods for and results from the study of design principles in molecular systems. Mathematical Biosciences, 231(1), 3–18. doi: 10.1016/j.mbs.2011.02.005.CrossRefGoogle Scholar
  40. Savageau, M. A. (2001). Design principles for elementary gene circuits: elements, methods, and examples. Chaos, 11(1), 142–159. doi: 10.1063/1.1349892.CrossRefGoogle Scholar
  41. Shinar, G., & Feinberg, M. (2011). Design principles for robust biochemical reaction networks: what works, what cannot work, and what might almost work. Mathematical Biosciences, 231(1), 39–48. doi: 10.1016/j.mbs.2011.02.012.CrossRefGoogle Scholar
  42. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J., & Doyle, J. (2004). Robustness of cellular functions. Cell, 118(6), 675–685. doi: 10.1016/j.cell.2004.09.008.CrossRefGoogle Scholar
  43. Stolovitzky, G. A., Monroe, D., & Califano, A. (2007). Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Annals of the New York Academy of Sciences, 1115, 1–22. doi: 10.1196/annals.1407.021.CrossRefGoogle Scholar
  44. Tyson, J. J., Chen, K. C., & Novák, B. (2003). Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Current Opinion in Cell Biology, 15(2), 221–231. doi: 10.1016/s0955-0674(03)00017-6.CrossRefGoogle Scholar
  45. van der Flier, L. G., & Clevers, H. (2009). Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annual Review of Physiology, 71, 241–260. doi: 10.1146/annurev.physiol.010908.163145.CrossRefGoogle Scholar
  46. Wiener, N. (1948). Cybernetics: Or, control and communication in the animal and the machine. New York: Wiley.Google Scholar
  47. Williams, G. C. (1966). Adaptation and natural selection. A critique of some current evolutionary thought. Princeton: Princeton University Press.Google Scholar
  48. Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings: piecewise approximations to reality. Cambridge: Harvard University Press.Google Scholar
  49. Wright, L. (1976). Teleological explanations. Berkeley: University of California Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Centre for Science Studies, Department of Physics and AstronomyAarhus UniversityAarhusDenmark
  2. 2.Department of Philosophy and Program for History and Philosophy of ScienceThe Hebrew UniversityJerusalemIsrael
  3. 3.Department of PhilosophyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations