European Journal for Philosophy of Science

, Volume 2, Issue 3, pp 453–480 | Cite as

The relationship between psychological capacities and neurobiological activities

  • Gregory JohnsonEmail author
Original Paper in Philosophy of Science


This paper addresses the relationship between psychological capacities, as they are understood within cognitive psychology, and neurobiological activities. First, Lycan’s (1987) account of this relationship is examined and certain problems with his account are explained. According to Lycan, psychological capacities occupy a higher level than neurobiological activities in a hierarchy of levels of nature, and psychological entities can be decomposed into neurobiological entities. After discussing some problems with Lycan’s account, a similar, more recent account built around levels of mechanisms is examined (Craver 2007). In the second half of this paper, an alternative is laid out. This new account uses levels of organization and levels of explanation to create a two-dimensional model. Psychological capacities occupy a high level of explanation relative to the cellular and molecular levels of organization. As a result, according to this model, psychological capacities are a particular way of describing the activities that occur at the cellular and molecular levels of organization.


Psychological capacity Levels of organization Levels of explanation 



I am grateful for the help that I received from Thomas Polger and John Bickle on the many drafts of this paper. I am also indebted to two anonymous reviewers for this journal who provided very helpful comments on the paper’s final versions.


  1. Bechtel, W. (1994). Levels of description and explanation in cognitive science. Minds and Machines, 4, 1–25.CrossRefGoogle Scholar
  2. Bechtel, W., Abrahamsen, A., & Graham, G. (1998). The life of cognitive science. In W. Bechtel, & G. Graham (Eds.), A companion to cognitive science (pp. 2–104). Malden, MA: Blackwell.Google Scholar
  3. Bickle, J. (2003). Philosophy and neuroscience: A ruthlessly reductive account. Boston: Kluwer.CrossRefGoogle Scholar
  4. Bourne, J. N., & Harris, K. M. (2011). Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus, 21, 354–373.CrossRefGoogle Scholar
  5. Carmena, J. M., Lebedev, M. A., Crist, R. E., O’Doherty, J. E., Santucci, D. M., Dimitrov, D. F., et al. (2003). Learning to control a brain–machine interface for reaching and grasping by primates. PLoS Biology, 1, 193–208.CrossRefGoogle Scholar
  6. Churchland, P. S., & Sejnowski, T. J. (1988). Perspectives on cognitive neuroscience. Science, 242, 741–745.CrossRefGoogle Scholar
  7. Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. Cambridge, MA: MIT Press.Google Scholar
  8. Craver, C. F. (2002). Interlevel experiments and multilevel mechanisms in the neuroscience of memory. Philosophy of Science, 69(Proceedings), S83–S97.CrossRefGoogle Scholar
  9. Craver, C. F. (2007). Explaining the brain: Mechanisms and the mosaic unity of neuroscience. New York: Oxford University Press.Google Scholar
  10. Cummins, R. (1975). Functional analysis. The Journal of Philosophy, 72, 741–765.CrossRefGoogle Scholar
  11. Cummins, R. (1983). The nature of psychological explanation. Cambridge, MA: MIT Press.Google Scholar
  12. Cummins, R. (2000). “How does it work?” versus “what are the laws?”: Two conceptions of psychological explanation. In F. C. Keil, & R. A. Wilson (Eds.), Explanation and cognition (pp. 117–144). Cambridge, MA: MIT Press.Google Scholar
  13. Dennett, D. C. (1978). Brainstorms: Philosophical essays on mind and psychology. Montgomery, VT: Bradford.Google Scholar
  14. Graziano, M. S. A., Taylor, C. S. R., & Moore, T. (2002a). Complex movements evoked by microstimulation of precentral cortex. Neuron, 34, 841–851.CrossRefGoogle Scholar
  15. Graziano, M. S. A., Taylor, C. S. R., Moore, T., & Cooke, D. F. (2002b). The cortical control of movement revisited. Neuron, 36, 349–362.CrossRefGoogle Scholar
  16. Johnson, G. (2009). Mechanisms and functional brain areas. Minds and Machines, 19, 255–271.CrossRefGoogle Scholar
  17. Kandel, E. R. (2001). The molecular biology of memory storage: A dialogue between genes and synapses. Science, 294, 1030–1038.CrossRefGoogle Scholar
  18. Lycan, W. G. (1981). Form, function, and feel. The Journal of Philosophy, 78, 24–50.CrossRefGoogle Scholar
  19. Lycan, W. G. (1987). Consciousness. Cambridge, MA: MIT Press.Google Scholar
  20. Lycan, W. G. (1991). Homuncular functionalism meets PDP. In W. Ramsey, S. P. Stich, & D. E. Rumelhart (Eds.), Philosophy and connectionist theory (pp. 259–286). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  21. Marr, D. (1977). Artificial intelligence–A personal view. Artificial Intelligence, 9, 37–48.CrossRefGoogle Scholar
  22. Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. San Francisco: W.H. Freeman.Google Scholar
  23. Marr, D., & Ullman, S. (1981). Directional selectivity and its use in early visual processing. Proceedings of the Royal Society of London B, 211, 151–180.CrossRefGoogle Scholar
  24. Mou, W., & McNamara, T. P. (2002). Intrinsic frames of reference in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 162–170.CrossRefGoogle Scholar
  25. Neves, G., Cooke, S. F., & Bliss, T. V. P. (2008). Synaptic plasticity, memory and the hippocampus: A neural network approach to causality. Nature Reviews Neuroscience, 9, 65–75.CrossRefGoogle Scholar
  26. Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese, 183, 283–311.CrossRefGoogle Scholar
  27. Polger, T. W. (2004). Natural minds. Cambridge, MA: MIT Press.Google Scholar
  28. Polger, T. W. (2009). Computational functionalism. In J. Symons, & P. Calvo (Eds.), Routledge companion to the philosophy of psychology (pp. 148–163). New York: Routledge.Google Scholar
  29. Robinson, J. (2004). Emotion: Biological fact or social construction? In Robert C. Solomon (Ed.), Thinking about feeling: Contemporary philosophers on emotion (pp. 28–43). New York: Oxford University Press.Google Scholar
  30. Robinson, J. (2005). Deeper than reason: Emotion and its role in literature, music, and art. Oxford: Oxford University Press.Google Scholar
  31. Rock, I. (1973). Orientation and form. New York: Academic Press.Google Scholar
  32. Rolls, E. T., Browning, A. S., Inoue, K., & Hernadi, I. (2005). Novel visual stimuli activate a population of neurons in the primate orbitofrontal cortex. Neurobiology of Learning and Memory, 84, 111–123.CrossRefGoogle Scholar
  33. Rolls, E. T., Critchley, H. D., Browning, A. S., & Inoue, K. (2006). Face-selective and auditory neurons in the primate orbitofrontal cortex. Experimental Brain Research, 170, 74–87.CrossRefGoogle Scholar
  34. Scherer, K. R. (1997). Profiles of emotion-antecedent appraisal: Testing theoretical predictions across cultures. Cognition & Emotion, 11, 113–150.CrossRefGoogle Scholar
  35. Scherer, K. R. (2001). Appraisal considered as a process of multilevel sequential checking. In K. R. Scherer, A. Schorr, & T. Johnstone (Eds.), Appraisal processes in emotion: Theory, methods, research (pp. 92–120). New York: Oxford University Press.Google Scholar
  36. Shelton, A. L., & McNamara, T. P. (2001). Systems of spatial reference in human memory. Cognitive Psychology, 43, 274–310.CrossRefGoogle Scholar
  37. Smith, C. A., & Kirby, L. D. (2000). Consequences require antecedents: Toward a process model of emotion elicitation. In J. P. Forgas (Ed.), Feeling and thinking: The role of affect in social cogition (pp. 83–106). Cambridge, U.K.: Cambridge University Press.Google Scholar
  38. Squire, L. R., & Kandel, E. R. (1999). Memory: From mind to molecules. New York: Scientific American Library.Google Scholar
  39. Tillery, S. I. H., & Taylor, D. M. (2004). Signal acquisition and analysis for cortical control of neuroprosthetics. Current Opinion in Neurobiology, 14, 758–762.CrossRefGoogle Scholar
  40. Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S., & Schwartz, A. B. (2008). Cortical control of a prosthetic arm for self-feeding. Nature, 453, 1098–1101.CrossRefGoogle Scholar
  41. Wimsatt, W. C. (1976). Reductionism, levels of organization, and the mind-body problem. In G. G. Globus, M. Grover, & I. Savodnik (Eds.), Consciousness and the brain: A scientific and philosophical inquiry (pp. 205–267). New York: Plenum Press.Google Scholar
  42. Wimsatt, W. C. (1994). The ontology of complex systems: Levels of organization, perspectives, and causal thickets. In M. Matthen & R. Ware (Eds.), Biology and society: Reflections on methodology (Supplementary vol. 20 of the Canadian Journal of Philosophy, pp. 207–274). Calgary: University of Calgary Press.Google Scholar
  43. Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings: Piecewise approximations to reality. Cambridge, MA: Harvard University Press.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of English and PhilosophyDrexel UniversityPhiladelphiaUSA

Personalised recommendations