Advertisement

European Journal for Philosophy of Science

, Volume 2, Issue 3, pp 435–452 | Cite as

Contrastive statistical explanation and causal heterogeneity

  • Jaakko KuorikoskiEmail author
Original paper in Philosophy of Science

Abstract

Probabilistic phenomena are often perceived as being problematic targets for contrastive explanation. It is usually thought that the possibility of contrastive explanation hinges on whether or not the probabilistic behaviour is irreducibly indeterministic, and that the possible remaining contrastive explananda are token event probabilities or complete probability distributions over such token outcomes. This paper uses the invariance-under-interventions account of contrastive explanation to argue against both ideas. First, the problem of contrastive explanation also arises in cases in which the probabilistic behaviour of the explanandum is due to unobserved causal heterogeneity. Second, it turns out that, in contrast to the case of pure indeterminism, the plausible contrastive explananda under causal heterogeneity are not token event probabilities, but population-level statistical facts.

Keywords

Contrastive explanation Statistics Heterogeneity Indeterminism Invariance 

References

  1. Angrist, J., & Pischke, J.-S. (2009). Mostly harmless econometrics: An empiricist’s companion. Princeton: Princeton University Press.Google Scholar
  2. Braumoeller, B. (2006). Explaining variance; or, stuck in a moment we can’t get out of. Political Analysis, 14, 268–290.CrossRefGoogle Scholar
  3. Cartwright, N. (1989). Nature’s capacities and their measurement. Oxford: Clarendon.Google Scholar
  4. Downs, G. W., & Rocke, D. M. (1979). Interpreting heteroscedasticity. American Journal of Political Science, 23, 816–828.CrossRefGoogle Scholar
  5. Freedman, D. (2004). On specifying graphical models for causation, and the identification problem. Evaluation Review, 26, 267–293.CrossRefGoogle Scholar
  6. Giere, R. (1979). Understanding scientific reasoning. New York: Holt, Rinehart and Winston.Google Scholar
  7. Giere, R. (1984). Causal models with frequency dependence. Journal of Philosophy, 81, 384–391.CrossRefGoogle Scholar
  8. Glymour, B. (1998). Contrastive, non-probabilistic statistical explanations. Philosophy of Science, 65, 448–471.CrossRefGoogle Scholar
  9. Hitchcock, C. (1999). Contrastive explanation and the demons of determinism. The British Journal for the Philosophy of Science, 50, 585–612.CrossRefGoogle Scholar
  10. Holland, P. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81, 945–960.CrossRefGoogle Scholar
  11. Holland, P. (1994). Probabilistic causation without probability. In P. Humphreys (Ed.), Patrick Suppes: Scientific philosopher, vol 1 (pp. 257–287). Dordrecht: Kluwer.CrossRefGoogle Scholar
  12. Holland, P. (2001). The causal interpretation of regression coefficients. In M. C. Galavotti, P. Suppes, & D. Constantini (Eds.), Stochastic causality (pp. 173–187). Stanford: CSLI Publications.Google Scholar
  13. King, G., Keohane, R. O., & Verba, S. (1994). Designing social inquiry: Scientific inference in qualitative research. Princeton: Princeton University Press.Google Scholar
  14. Kitcher, P. (1989). Explanatory unification and the causal structure of the world. In P. Kitcher & W. Salmon (Eds.), Scientific explanation (pp. 410–505). Minneapolis: University of Minnesota Press.Google Scholar
  15. Lewis, D. (1986). Philosophical papers, vol. II. Oxford: Oxford University Press.Google Scholar
  16. Lewontin, R. (1974). The analysis of variance and the analysis of causes. American Journal of Human Genetics, 26, 400–411.Google Scholar
  17. Mackie, J. L. (1974). The cement of the universe. Oxford: Clarendon.Google Scholar
  18. Morgan, S., & Winship, C. (2007). Counterfactuals and causal inference: Methods and principles for social research. Cambridge and New York: Cambridge University Press.CrossRefGoogle Scholar
  19. Niiniluoto, I. (1981). Statistical explanation reconsidered. Synthese, 48, 437–472.CrossRefGoogle Scholar
  20. Niiniluoto, I. (2000). Hempel’s theory of statistical explanation. In J. Fetzer (Ed.), Science, explanation, and rationality: The philosophy of Carl G (pp. 138–163). Hempel: Oxford University Press.Google Scholar
  21. Pearl, J. (2000). Causality: Models, reasoning and inference. Cambridge: Cambridge University Press.Google Scholar
  22. Percival, P. (2000). Lewis’s dilemma of explanation under indeterminism exposed and resolved. Mind, 109, 39–66.CrossRefGoogle Scholar
  23. Pratt, J. W., & Schlaifer, R. (1988). On the interpretation and observation of laws. Journal of Econometrics, 39, 23–52.CrossRefGoogle Scholar
  24. Railton, P. (1978). A deductive-nomological model of probabilistic explanations. Philosophy of Science, 45, 206–226.CrossRefGoogle Scholar
  25. Railton, P. (1981). Probability, explanation and information. Synthese, 48, 233–256.CrossRefGoogle Scholar
  26. Russo, F. (2007). Causality and causal modelling in the social sciences: Measuring variations. Dordrecht: Springer.Google Scholar
  27. Salmon, W. (1984). Scientific explanation and the causal structure of the world. Princeton: Princeton University Press.Google Scholar
  28. Salmon, W. (1998). Causation and explanation. Oxford: Oxford University Press.CrossRefGoogle Scholar
  29. Schweder, R. (2007). Some notes on unificationism and probabilistic explanation. In J. Persson & P. Ylikoski (Eds.), Rethinking explanation (pp. 119–128). Dordrecht: Springer.CrossRefGoogle Scholar
  30. Sober, E. (1986). Explanatory presupposition. Australasian Journal of Philosophy, 64, 143–149.CrossRefGoogle Scholar
  31. Spanos, A. (1995). On theory testing in econometrics: modeling with nonexperimental data. Journal of Economometrics, 67, 189–226.CrossRefGoogle Scholar
  32. Steyer, R., Gabler, S., von Davier, A., Nachtigall, C., & Buhl, T. (2000). Causal regression models II: unconfoundedness and causal unbiasedness. Methods of Psychological Research Online, 5(3), 55–86.Google Scholar
  33. Strevens, M. (2000). Do large probabilities explain better? Philosophy of Science, 67, 366–390.CrossRefGoogle Scholar
  34. van Fraassen, B. (1980). Scientific image. Oxford: Oxford University Press.CrossRefGoogle Scholar
  35. Winship, C., & Morgan, S. L. (1999). The estimation of causal effects from observational data. Annual Review of Sociology, 25, 659–706.CrossRefGoogle Scholar
  36. Woodward, J. (2003). Making things happen—A theory of causal explanation. Oxford: Oxford University Press.Google Scholar
  37. Ylikoski, P., & Kuorikoski, J. (2010). Dissecting explanatory power. Philosophical Studies, 148, 201–219.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2012

Authors and Affiliations

  1. 1.Social and Moral Philosophy/Department of Political and Economic StudiesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations