European Journal for Philosophy of Science

, Volume 2, Issue 3, pp 299–312 | Cite as

Robust processes and teleological language

  • Jonathan BirchEmail author
Original paper in Philosophy of Biology


I consider some hitherto unexplored examples of teleological language in the sciences. In explicating these examples, I aim to show (a) that such language is not the sole preserve of the biological sciences, and (b) that not all such talk is reducible to the ascription of functions. In chemistry and biochemistry, scientists explaining molecular rearrangements and protein folding talk informally of molecules rearranging “in order to” maximize stability. Evolutionary biologists, meanwhile, often speak of traits evolving “in order to” optimize some fitness-relevant variable. I argue that in all three contexts such locutions are best interpreted as shorthands for more detailed explanations which, were we to spell them out in full, would show that the relevant process would robustly converge towards the same end-point despite variation in initial conditions. This suggests that, in biology, such talk presupposes a substantial form of adaptationism. The upshot is that such shorthands may be more applicable in the physical sciences than the biological.


Teleology Function Biology Chemistry Thermodynamics Adaptationism 



I thank Tim Lewens, Angela Breitenbach, Alex Broadbent, Kevin Brosnan, Hasok Chang, Andy Gardner, Nick Jardine, Elliott Sober and an anonymous referee for helpful comments. This work was supported by the Arts and Humanities Research Council.


  1. Allen, C., Bekoff, M., & Lauder, G. (1998). Nature’s purposes: Analyses of function and design in biology. Cambridge, MA: MIT Press.Google Scholar
  2. Anslyn, E. V., & Dougherty, D. A. (2005). Modern physical organic chemistry. Herndon, VA: University Science.Google Scholar
  3. Ariew, A., Perlman, M., & Cummins, R. (2002). Functions: New essays in the philosophy of psychology and biology. New York: Oxford University Press.Google Scholar
  4. Boorse, C. (1976). Wright on functions. Philosophical Review, 85, 70–86.CrossRefGoogle Scholar
  5. Boorse, C. (2002). A rebuttal on functions. In A. Ariew, R. Cummins, & M. Perlman (Eds.), Functions: New essays in philosophy of psychology and biology (pp. 63–112). New York: Oxford University Press.Google Scholar
  6. Boronat, M., Viruela, P., & Corma, A. (1996). Theoretical study on the mechanism of the superacid-catalyzed unimolecular isomerization of n-Butane and 1-Butene. The Journal of Physical Chemistry, 100, 633–637.CrossRefGoogle Scholar
  7. Bryngelson, J. D., Onuchic, J. N., Socci, N. D., & Wolynes, P. G. (1995). Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins: Structure, Function and Bioinformatics, 21, 167–195.CrossRefGoogle Scholar
  8. Buller, D. J. (1999a). Natural teleology. In D. J. Buller (Ed.), Function, selection, and design (pp. 1–27). Albany: SUNY Press.Google Scholar
  9. Buller, D. J. (Ed.) (1999b). Function, selection, and design. Albany: SUNY Press.Google Scholar
  10. Cahn, R. W. (1996). Physical metallurgy. Amsterdam: Elsevier.Google Scholar
  11. Chapuisat, M. (2010). Social evolution: sick ants face death alone. Current Biology, 20, R104–R105.CrossRefGoogle Scholar
  12. Chuine, I. (2010). Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3149–3160.CrossRefGoogle Scholar
  13. Clayden, J., Greeves, N., Warren, S., & Wothers, P. (2001). Organic chemistry. Oxford: Oxford University Press.Google Scholar
  14. Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., & Yannakakis, M. (1998). On the complexity of protein folding. Journal of Computational Biology, 5, 423–465.CrossRefGoogle Scholar
  15. Cummins, R. (1975). Functional analysis. Journal of Philosophy, 72, 741–764.CrossRefGoogle Scholar
  16. Cummins, R., & Roth, M. (2009). Traits have not evolved to function the way they do because of a past advantage. In F. Ayala & R. Arp (Eds.), Contemporary debates in philosophy of biology (pp. 72–86). Wiley-Blackwell: Chichester.CrossRefGoogle Scholar
  17. Dennett, D. C. (1995). Darwin’s dangerous idea: Evolution and the meanings of life. New York: Simon & Schuster.Google Scholar
  18. Ferrari, N., Rosà, R., Lanfranchi, P., & Ruckstuhl, K. E. (2010). Effect of sexual segregation on host–parasite interaction: model simulation for abomasal parasite dynamics in alpine ibex (Capra ibex). International Journal for Parasitology, 40, 1285–1293.CrossRefGoogle Scholar
  19. Fromme, B. (2001). d-d excitations in transition metal oxides. Dordrecht: Springer.Google Scholar
  20. Gardner, A. (2009). Adaptation as organism design. Biology Letters, 5, 861–864.CrossRefGoogle Scholar
  21. Garrett, R., & Grisham, C. M. (2005). Biochemistry (3rd ed.). Andover: Cengage.Google Scholar
  22. Godfrey-Smith, P. (1993). Functions: consensus without unity. Pacific Philosophical Quarterly, 74, 196–208.Google Scholar
  23. Gould, S. J. (1978). The Panda’s peculiar thumb. Natural History, 87, 20–30.Google Scholar
  24. Grafen, A. (1991). Modelling in behavioural ecology. In J. R. Krebs & N. B. Davies (Eds.), Behavioural ecology (3rd ed., pp. 5–31). Oxford: Blackwell.Google Scholar
  25. Grafen, A. (2006). Optimization of inclusive fitness. Journal of Theoretical Biology, 238, 541–563.CrossRefGoogle Scholar
  26. Gupta, A., Maňuch, J., & Stacho, L. (2005). Structure-approximating inverse protein folding problem in the inverse HP model. Journal of Computational Biology, 12, 1328–1345.CrossRefGoogle Scholar
  27. Hawkes, K., O’Connell, J. F., Burton Jones, N. G., Alvarez, H., & Charnov, E. L. (1998). Grandmothering, menopause, and the evolution of human life histories. Proceedings of the National Academy of Sciences, 95, 1336–1339.CrossRefGoogle Scholar
  28. Hull, D. (1974). Philosophy of biological science. Englewood Cliffs: Prentice-Hall.Google Scholar
  29. Jackson, F., & Pettit, P. (1990). Program explanation: a general perspective. Analysis, 50, 107–117.CrossRefGoogle Scholar
  30. Lewens, T. (2007). Functions. In M. Matthen & C. Stephens (Eds.), Handbook of the philosophy of science: Philosophy of biology (pp. 525–549). Amsterdam: North Holland.Google Scholar
  31. Lewens, T. (2009). Seven types of adaptationism. Biology and Philosophy, 24, 161–182.CrossRefGoogle Scholar
  32. Libertino, S., & La Magna, A. (2009). Damage formation and evolution in ion-implanted crystalline Si. In H. Bernas (Ed.), Materials science with ion beams (pp. 147–212). Dordrecht: Springer.CrossRefGoogle Scholar
  33. Lipton, P. (2004). Inference to the best explanation (2nd ed.). London: Routledge.Google Scholar
  34. Martens, J. (2011). Social evolution and strategic thinking. Biology and Philosophy, 26, 697–715.CrossRefGoogle Scholar
  35. Millikan, R. G. (2002). Biofunctions: Two paradigms. In A. Ariew, R. Cummins, & M. Perlman (Eds.), Functions: New essays in philosophy of psychology and biology (pp. 113–143). New York: Oxford University Press.Google Scholar
  36. Moran, P. A. P. (1963). On the non-existence of adaptive topographies. Annals of Human Genetics, 27, 383–393.CrossRefGoogle Scholar
  37. Mossio, M., Saborido, C., & Moreno, A. (2009). An organizational account of biological functions. British Journal for the Philosophy of Science, 60, 813–841.CrossRefGoogle Scholar
  38. Nanay, B. (2010). A modal theory of function. Journal of Philosophy, 107, 412–431.Google Scholar
  39. Reiss, J. O. (2009). Not by design: Retiring Darwin’s watchmaker. Berkeley: University of California Press.Google Scholar
  40. Rose, G. D., Fleming, P. J., Banavar, J. R., & Maritan, A. (2006). A backbone-based theory of protein folding. Proceedings of the National Academy of Sciences, 103, 16623–16633.CrossRefGoogle Scholar
  41. Rosenbleuth, A., Wiener, N., & Bigelow, J. (1943). Behavior, purpose and teleology. Philosophy of Science, 10, 18–24.CrossRefGoogle Scholar
  42. Ruse, M. (2002). Evolutionary biology and teleological thinking. In A. Ariew, R. Cummins, & M. Perlman (Eds.), Functions: New essays in the philosophy of psychology and biology (pp. 33–60). Oxford: Oxford University Press.Google Scholar
  43. Schwartz, A. K., & Hendry, A. P. (2010). Testing the influence of local forest canopy clearing on phenotypic variation in Trinidadian guppies. Functional Ecology, 24, 354–364.CrossRefGoogle Scholar
  44. Sieber, S., Buzek, P., Schleyer, P., Koch, W., & Carneiro, J. (1993). The C4H9+ potential energy surface. Journal of the American Chemical Society, 115, 259–270.CrossRefGoogle Scholar
  45. Sober, E. (1983). Equilibrium explanation. Philosophical Studies, 43, 201–210.CrossRefGoogle Scholar
  46. Sober, E. (1984). The nature of selection: Evolutionary theory in philosophical focus. Chicago, IL: University of Chicago Press.Google Scholar
  47. Sorrell, T. N. (2006). Organic chemistry (2nd ed.). Herndon, VA: University Science.Google Scholar
  48. St. Clair, C., & Visick, J. (2010). Exploring bioinformatics: A project-based approach. Burlington, MA: Jones and Bartlett.Google Scholar
  49. Sterelny, K. (1996). Explanatory pluralism in evolutionary biology. Biology and Philosophy, 11, 193–214.CrossRefGoogle Scholar
  50. Talanquer, V. (2007). Explanations and teleology in chemistry education. International Journal of Science Education, 29, 853–870.CrossRefGoogle Scholar
  51. van Fraassen, B. C. (1980). The scientific image. Oxford: Clarendon.CrossRefGoogle Scholar
  52. Wicken, J. S. (1981). Causal explanations in classical and statistical thermodynamics. Philosophy of Science, 48, 65–77.CrossRefGoogle Scholar
  53. Woodward, J. (2003). Making things happen: A theory of causal explanation. New York: Oxford University Press.Google Scholar
  54. Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the Sixth International Congress on Genetics, 355–366.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of History and Philosophy of ScienceUniversity of CambridgeCambridgeUK

Personalised recommendations