European Journal for Philosophy of Science

, Volume 2, Issue 3, pp 275–297 | Cite as

What counts as a Newtonian system? The view from Norton’s dome

  • Samuel Craig FletcherEmail author
Original Paper in Philosophy of Physics


If the force on a particle fails to satisfy a Lipschitz condition at a point, it relaxes one of the conditions necessary for a locally unique solution to the particle’s equation of motion. I examine the most discussed example of this failure of determinism in classical mechanics—that of Norton’s dome—and the range of current objections against it. Finding there are many different conceptions of classical mechanics appropriate and useful for different purposes, I argue that no single conception is preferred. Instead of arguing for or against determinism, I stress the wide variety of pragmatic considerations that, in a specific context, may lead one usefully and legitimately to adopt one conception over another in which determinism may or may not hold.


Determinism Classical mechanics Newtonian mechanics Pluralism Pragmatism 



Thanks to Jeff Barrett, David Malament, Peter Vickers, Jim Weatherall, and two anonymous referees for helpful comments, and to the audiences of both the Southern California Philosophy of Physics Group and the Sixth Logic, Mathematics, and Physics Graduate Philosophy Conference at the University of Western Ontario for comments on earlier versions. Thanks also to Jennifer C. Herrera for comments on my translation of Poisson. Part of the present work was written with the support of a National Science Foundation Graduate Research Fellowship.


  1. Arnol’d, V. I. (1992). Ordinary differential equations (trans: Cooke, R.). Berlin: Springer.Google Scholar
  2. Bruckner, A. M. (1978). Differentiation of real functions. Berlin: Springer.Google Scholar
  3. Boussinesq, J. (1922). Théorie analytique de la chaleur, mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière. Compléments au tome III: Conciliation du véritable déterminisme avec l’éxistence de la vie et de la liberté morale. Paris: Gauthier-Villars, 1878, 1879 (2nd ed.), 1922 (3rd ed.).Google Scholar
  4. Callender, C. (1995). The Metaphysics of time reversal: Hutchison on classical mechanics. British Journal for the Philosophy of Science, 46, 331–340.CrossRefGoogle Scholar
  5. Cournot, A. A. (1841). Traité élémentaire de la théorie des fonctions et du calcul infinitésimal. Paris: L. Hachette, 1857 (2nd ed.).Google Scholar
  6. Deakin, M. A. B. (1988). Nineteenth century anticipations of modern theory of dynamical systems. Archive for History of the Exact Sciences, 39(2), 183–194.Google Scholar
  7. Duhamel, J. M. C. (1845). Cours de mécanique. Paris: Mallet–Bachelier, 1853 (2nd ed.), 1862 (3rd ed.).Google Scholar
  8. E, W., & Vanden-Eijnden, E. (2003). A note on generalized flows. Physica D, 183, 159–174.CrossRefGoogle Scholar
  9. Earman, J. (2007). Aspects of determinism in modern physics. In J. Butterfield, & J. Earman (Eds.), Philosophy of physics. Amsterdam: Elsevier.Google Scholar
  10. Earman, J. (2008). How determinism can fail in classical physics and how quantum physics can (sometimes) provide a cure. Philosophy of Science, 75, 817–829.CrossRefGoogle Scholar
  11. Hoering, W. (1969). Indeterminism in classical physics. British Journal for the Philosophy of Science, 20, 247–255.CrossRefGoogle Scholar
  12. Hutchison, K. (1993). Is classical mechanics really time-reversible and deterministic? British Journal for the Philosophy of Science, 44, 307–323.CrossRefGoogle Scholar
  13. Hutchison, K. (1995). Temporal asymmetry in classical mechanics. British Journal for the Philosophy of Science, 46, 219–234.CrossRefGoogle Scholar
  14. Jackson, J. D. (1975). Classical electrodynamics (2nd ed.). New York: Wiley.Google Scholar
  15. Kosyakov, B. P. (2008). Is classical reality completely deterministic? Foundations of Physics, 38, 76–88.CrossRefGoogle Scholar
  16. Korolev, A. V. (2006). Indeterminism, asymptotic reasoning, and time irreversibility in classical physics. Phil. of Sci. Assoc. 20th Biennial Mtg. (Vancouver): PSA 2006 Contributed Papers.
  17. Korolev, A. V. (2007). Indeterminism, asymptotic reasoning, and time irreversibility in classical physics. Philosophy of Science, 74, 943–956.CrossRefGoogle Scholar
  18. Korolev, A .V. (2008). The Norton-type Lipschitz-indeterministic systems and elastic phenomena: Indeterminism as an artefact of infinite idealizations. Phil. of Sci. Assoc. 21st Biennial Mtg. (Pittsburgh, PA): PSA 2008 Contributed Papers.
  19. Landau, L. D., & Lifshitz, E. M. (1976). Mechanics (3rd ed.). (trans: Sykes, J.S., & Bell, J.S.). Oxford: Elsevier.Google Scholar
  20. Lange, M. (2009). Must the fundamental laws of physics be complete? Philosophy and Phenomenological Research, 78(2), 312–345.CrossRefGoogle Scholar
  21. Laraudogoitia, J. P. (1997). On indeterminism in classical dynamics. European Journal of Physics, 18, 180–181.CrossRefGoogle Scholar
  22. Malament, D. B. (2008). Norton’s slippery slope. Philosophy of Science, 75, 799–816.CrossRefGoogle Scholar
  23. Norton, J. D. (2003). Causation as folk science. Philosophers’ Imprint 3.4.; reprinted in H. Price, & R. Corry (Eds.), Causation, physics, and the constitution of reality: Russell’s republic revisited. New York: Oxford University Press.
  24. Norton, J. D. (2006). The dome: An unexpectedly simple failure of determinism. Phil. of Sci. Assoc. 20th Biennial Mtg. (Vancouver): PSA 2006 Symposia.
  25. Norton, J. D. (2008). The dome: An unexpectedly simple failure of determinism. Philosophy of Science, 75, 786–798.CrossRefGoogle Scholar
  26. Poisson, S. D. (1806). Mémoire sur les solutions particulières des équations différentielles et des équations aux différences. Journal de l’École Polytechnique, 6(13), 60–125.Google Scholar
  27. Resnick, R., Halliday, D., & Krane, K. S. (1992). Physics (Vol. 1, 4th ed.). New York: Wiley.Google Scholar
  28. Roberts, B. W. (2009). Wilson’s case against the dome: Not necessary, not sufficient. (Unpublished manuscript, Feb. 2009.)
  29. Vickers, P. (2008). Frisch, Muller, and Belot on an inconsistency in classical electrodynamics. British Journal for the Philosophy of Science, 59, 767–792.CrossRefGoogle Scholar
  30. Vickers, P. (2009). Was Newtonian cosmology really inconsistent? Studies in History and Philosophy of Modern Physics, 40, 197–208.CrossRefGoogle Scholar
  31. Vickers, P. (2011). Theory-eliminativism as a methodological tool. PhilSci Archive.
  32. Wilson, M. (2006). Wandering significance. New York: Oxford University Press.CrossRefGoogle Scholar
  33. Wilson, M. (2009). Determinism and the mystery of the missing physics. British Journal for the Philosophy of Science, 60, 173–193.CrossRefGoogle Scholar
  34. Zimba, J. (2008). Inertia and determinism. British Journal for the Philosophy of Science, 59, 417–428.CrossRefGoogle Scholar
  35. Zinkernagel, H. (2010). Causal fundamentalism in physics. In M. Suárez, M. Dorato, & M. Rédei (Eds.), EPSA philosophical issues in the sciences: Launch of the European philosophy of science association. Dordrecht: Springer.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Logic and Philosophy of ScienceUniversity of California, IrvineIrvineUSA

Personalised recommendations