Skip to main content

Advertisement

Log in

Histopathological Evaluation and Molecular Diagnostic Tests for Peritoneal Metastases with Unknown Primary Site—a Review

  • Review Article
  • Published:
Indian Journal of Surgical Oncology Aims and scope Submit manuscript

Abstract

Cancer of unknown primary (CUP) is a well-studied entity with guidelines available for the management of patients with CUP. The peritoneum represents one of the metastatic sites in CUP, and peritoneal metastases (PM) could present as CUP. PM of unknown origin remains a poorly studied clinical entity. There is only one series of 15 cases, one population-based study, and few other case reports on this subject. Studies on CUP, in general, cover some common tumour histological types like adenocarcinomas and squamous carcinomas. Some of these tumours may have a good prognosis though majority have high-grade disease with a poor long-term outcome. Some of the histological tumour types commonly seen in the clinical scenario of PM like mucinous carcinoma have not been studied. In this review, we divide PM into five histological types—adenocarcinomas, serous carcinomas, mucinous carcinomas, sarcomas and other rare varieties. We provide algorithms to identify the primary tumour site using immunohistochemistry when imaging, and endoscopy fails to establish the primary tumour site. The role of molecular diagnostic tests for PM or unknown origin is also discussed. Current literature on site-specific systemic therapy based on gene expression profiling does not show a clear benefit of this approach over empirical systemic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Glehen O, Gilly FN, Boutitie F, Bereder JM, Quenet F, Sideris L, Mansvelt B, Lorimier G, Msika S, Elias D (2010) Toward curative treatment of peritoneal carcinomatosis from nonovarian origin by cytoreductive surgery combined with perioperative intraperitoneal chemotherapy. Cancer 116:5608–5618. https://doi.org/10.1002/cncr.25356

    Article  PubMed  Google Scholar 

  2. Rajeev R, Turaga KK (2016) Hyperthermic intraperitoneal chemotherapy and cytoreductive surgery in the management of peritoneal carcinomatosis. Cancer Control 23(1):36–46. https://doi.org/10.1177/107327481602300107

    Article  PubMed  Google Scholar 

  3. Domenico S, Paul HS (2015) Theoretical considerations for optimal cytoreductive surgery plus hyperthermic perioperative chemotherapy. J Gastrointest Dig Syst 5:359. https://doi.org/10.4172/2161-069X.1000359

    Article  Google Scholar 

  4. Sebbag G, Shmookler BM, Chang D, Sugarbaker PH (2001) Peritoneal carcinomatosis from an unknown primary site. Management of 15 patients. Tumori 87(2):67–73

    Article  CAS  PubMed  Google Scholar 

  5. Morera-Ocon FJ, Navarro-Campoy C (2019) History of pseudomyxoma peritonei from its origin to the first decades of the twenty-first century. World J Gastrointest Surg 11(9):358–364. https://doi.org/10.4240/wjgs.v11.i9.358

    Article  PubMed  PubMed Central  Google Scholar 

  6. Thomassen I, Verhoeven RH, van Gestel YR, van de Wouw AJ, Lemmens VE, de Hingh IH (2014) Population-based incidence, treatment and survival of patients with peritoneal metastases of unknown origin. Eur J Cancer 50(1):50–56. https://doi.org/10.1016/j.ejca.2013.08.009

    Article  PubMed  Google Scholar 

  7. Rijken A, Loef C, van de Wouw YAJ et al (2022) Updated incidence, treatment and survival of a nationwide cohort of patients with peritoneal metastases of unknown origin. Indian J Surg Oncol. https://doi.org/10.1007/s13193-022-01567-x

    Article  Google Scholar 

  8. Bhatt A. Parikh L, Mishra S, Glehen O (2020) Approach to a patient with peritoneal metastases with unknown primary site: focus on histopathological evaluation. In: Glehen O, Bhatt A (eds) Pathology of peritoneal metastases. Springer, Singapore. https://doi.org/10.1007/978-981-15-3773-8_11

  9. Kato S, Alsafar A, Walavalkar V, Hainsworth J, Kurzrock R (2021) Cancer of unknown primary in the molecular era. Trends Cancer 7(5):465–477. https://doi.org/10.1016/j.trecan.2020.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pavlidis N, Fizazi K (2005) Cancer of unknown primary (CUP). Crit Rev Oncol Hematol 54:243–250

    Article  PubMed  Google Scholar 

  11. Frost P (1991) Unknown primary tumours: an example of accelerated (type 2) tumor progression. Basic Life Sci 57:233–237

    CAS  PubMed  Google Scholar 

  12. Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9(4):302–312

    Article  CAS  PubMed  Google Scholar 

  13. Pavlidis N, Khaled H, Gaafar R (2015) A mini review on cancer of unknown primary site: a clinical puzzle for the oncologists. J Adv Res 6(3):375–82. https://doi.org/10.1016/j.jare.2014.11.007

    Article  PubMed  Google Scholar 

  14. Hayes-Jordan A, Green H, Lin H, Owusu-Agyemang P, Mejia R, Okhuysen-Cawley R, Cortes J, Fitzgerald NE, McAleer MF, Herzog C, Huh WW, Anderson P (2015) Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) for children, adolescents, and young adults: the first 50 cases. Ann Surg Oncol 22(5):1726–1732. https://doi.org/10.1245/s10434-014-4289-y

    Article  PubMed  Google Scholar 

  15. Hatano Y, Hatano K, Tamada M, Morishige KI, Tomita H, Yanai H, Hara A (2019) A comprehensive review of ovarian serous carcinom. Adv Anat Path 26(5):329–339. https://doi.org/10.1097/PAP.0000000000000243

    Article  Google Scholar 

  16. Seidman MA, Oduyebo T, Muto MG, Crum CP, Nucci MR, Quade BJ (2012) Peritoneal dissemination complicating morcellation of uterine mesenchymal neoplasms. PLoS One 7(11):e50058. https://doi.org/10.1371/journal.pone.0050058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Palial KK, Yang B, Charlesworth PJS, Lewis CE, Browning L, Verrill C (2018) A rare case of a urachal mucinous cystic tumour of low malignant potential. Cancer Stud Mol Med Open J 4(1):5–9. https://doi.org/10.17140/CSMMOJ-4-122

    Article  Google Scholar 

  18. Cortés-Guiral D, Hübner M, Alyami M et al (2021) Primary and metastatic peritoneal surface malignancies. Nat Rev Dis Primers 7:91. https://doi.org/10.1038/s41572-021-00326-6

    Article  PubMed  Google Scholar 

  19. McCluggage WG (2000) Recent advances in immunohistochemistry in the diagnosis of ovarian neoplasms. J Clin Pathol 53:558–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCluggage WG (2002) Recent advances in immunohistochemistry in gynaecological pathology. Histopathology 46:309–326

    Article  Google Scholar 

  21. McCluggage WG, Young RH (2005) Immunohistochemistry as a diagnostic aid in the evaluation of ovarian tumors. Semin Diagn Pathol 22:3–32

    Article  PubMed  Google Scholar 

  22. Ozcan A, Steven SS, Hamilton C, Anjana K, Coffey D, Krishnan B, Truong LD (2011) PAX 8 expression in non-neoplastic tissues, primary tumors, and metastatic tumors: a comprehensive immunohistochemical study. Mod Pathol 24:751–764

    Article  CAS  PubMed  Google Scholar 

  23. Chai H, Ren Q, Fan Q, Ye L, Du G, Du H, Cheng Z (2017) PAX8 is a potential marker for the diagnosis of primary epithelial ovarian cancer. Oncol Lett 14:5871–5875. https://doi.org/10.3892/ol.2017.6949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Makrigiannakis A, Amin K, Coukos G, Tilly JL, Coutifaris C (2000) Regulated expression and potential roles of p53 and Wilms’ tumor suppressor gene (WT1) during follicular development in the human ovary. J Clin Endocrinol Metab 85(1):449–459

    CAS  PubMed  Google Scholar 

  25. Bárcena C, Oliva E (2011) WT1 expression in the female genital tract. Adv Anat Pathol 18(6):454–465

    Article  PubMed  Google Scholar 

  26. Liliac L, Carcangiu ML, Canevari S, Căruntu ID, Ciobanu Apostol DG, Danciu M, Onofriescu M, Amălinei C (2013) The value of PAX8 and WT1 molecules in ovarian cancer diagnosis. Rom J Morphol Embryol 54(1):17–27

    PubMed  Google Scholar 

  27. Dennis JL, Hvidsten TR, Wit EC et al (2005) Markers of adenocarcinoma characteristic of the site of origin: development of a diagnostic algorithm. Clin Cancer Res 11(10):3766–3772. https://doi.org/10.1158/1078-0432.CCR-04-2236

    Article  CAS  PubMed  Google Scholar 

  28. FitzPatrick DR, Carr IM, McLaren L et al (2003) Identification of SATB2 as the cleft palate gene on 2q32–q33. Hum Mol Genet 12(19):2491–2501. https://doi.org/10.1093/hmg/ddg248

    Article  CAS  PubMed  Google Scholar 

  29. Conner JR, Hornick JL (2015) Metastatic carcinoma of unknown primary: diagnostic approach using immunohistochemistry. Adv Anat Pathol 22(3):149–167. https://doi.org/10.1097/pap.0000000000000069

    Article  CAS  PubMed  Google Scholar 

  30. Magnusson K, de Wit M, Brennan DJ et al (2011) SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. Am J Surg Pathol 35(7):937–948. https://doi.org/10.1097/PAS.0b013e31821c3dae

    Article  PubMed  Google Scholar 

  31. Dragomir A, de Wit M, Johansson C, Uhlen M, Ponten F (2014) The role of SATB2 as a diagnostic marker for tumors of colorectal origin: results of a pathology-based clinical prospective study. Am J Clin Pathol 141(5):630–638

    Article  PubMed  Google Scholar 

  32. Lin F, Shi J, Zhu S et al (2014) Cadherin-17 and SATB2 are sensitive and specific immunomarkers for medullary carcinoma of the large intestine. Arch Pathol Lab Med 138(8):1015–1026. https://doi.org/10.5858/arpa.2013-0452-oa ([Abstract] [GoogleScholar])

    Article  PubMed  Google Scholar 

  33. Brandler TC, Jelloul F, Soto D, Das K, Rosen L, Bhuiya TA (2015) Young investigator challenge: cadherin-17 and SATB2 in cytology specimens: do these new immunostains help in differentiating metastatic colorectal adenocarcinoma from adenocarcinomas of other origins? Cancer Cytopathol 123(12):706–713

    Article  CAS  PubMed  Google Scholar 

  34. Berg KB, Schaeffer DF (2017) SATB2 as an immunohistochemical marker for colorectal adenocarcinoma: a concise review of benefits and pitfalls. Arch Pathol Lab Med 141(10):1428–1433. https://doi.org/10.5858/arpa.2016-0243-RS

    Article  CAS  PubMed  Google Scholar 

  35. Goldstein NS, Bassi D (2001) Cytokeratins 7, 17, and 20 reactivity in pancreatic and ampulla of vater adenocarcinomas. Percentage of positivity and distribution is affected by the cut-point threshold. Am J Clin Pathol 115:695–702

    Article  CAS  PubMed  Google Scholar 

  36. Park SY, Kim HS, Hong EK et al (2002) Expression of cytokeratins 7 and 20 in primary carcinomas of the stomach and colorectum and their value in the differential diagnosis of metastatic carcinomas to the ovary. Hum Pathol 33:1078–1085

    Article  CAS  PubMed  Google Scholar 

  37. Ji H, Isacson C, Seidman JD et al (2002) Cytokeratins 7 and 20, Dpc4, and MUC5AC in the distinction of metastatic mucinous carcinomas in the ovary from primary ovarian mucinous tumors: Dpc4 assists in identifying metastatic pancreatic carcinomas. Int J Gynecol Pathol 21:391–400

    Article  PubMed  Google Scholar 

  38. Chhieng DC, Benson E, Eltoum I et al (2003) MUC1 and MUC2 expression in pancreatic ductal carcinoma obtained by fine-needle aspiration. Cancer 99:365–371

    Article  CAS  PubMed  Google Scholar 

  39. Nonaka D, Chiriboga L, Soslow RA (2008) Expression of pax8 as a useful marker in distinguishing ovarian carcinomas from mammary carcinomas. Am J Surg Pathol 32:1566–1571

    Article  PubMed  Google Scholar 

  40. Tornos C, Soslow R, Chen S et al (2005) Expression of WT1, CA125, and GCDFP-15 as useful markers in the differential diagnosis of primary ovarian carcinomas versus metastatic breast cancer to the ovary. Am J Surg Pathol 29:1482–1489

    Article  PubMed  Google Scholar 

  41. Liu H, Shi J, Wilkerson ML et al (2012) Immunohistochemical evaluation of GATA3 expression in tumors and normal tissues: a useful immunomarker for breast and urothelial carcinomas. Am J Clin Pathol 138:57–64

    Article  PubMed  Google Scholar 

  42. Bhargava R, Beriwal S, Dabbs DJ (2007) Mammaglobin vs GCDFP-15: an immunohistologic validation survey for sensitivity and specificity. Am J Clin Pathol 127:103–113

    Article  CAS  PubMed  Google Scholar 

  43. Ruiz-Tovar J, Alonso HN, Morales CV, Lobo ME, Sanjuanbenito DA, Martinez ME (2007) Peritoneal carcinomatosis secondary to carcinoid tumour. Clin Transl Oncol 9:804–805

    Article  CAS  PubMed  Google Scholar 

  44. Mertz H, Vyberg M, Paulsen SM et al (1998) Immunohistochemical detection of neuroendocrine markers in tumors of the lungs and gastrointestinal tract. Appl Immunohistochem 6:175–180

    Article  CAS  Google Scholar 

  45. Vasseur B, Cadiot G, Zins M et al (1996) Peritoneal carcinomatosis in patients with digestive endocrine tumors. Cancer 78:1686–1692

    Article  CAS  PubMed  Google Scholar 

  46. Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, Washington KM, Carneiro F, Cree IA (2020) The 2019 WHO classification of tumours of the digestive system. Histopathology 76:182–188. https://doi.org/10.1111/his.13975

    Article  PubMed  Google Scholar 

  47. Vinik AI, Thompson N, Eckhauser F, Moattari R (1989) Clinical features of carcinoid syndrome and the use of somatostatin analogue in its management. Acta Oncol 28:389–402

    Article  CAS  PubMed  Google Scholar 

  48. Gonzalez RS, Liu EH, Alvarez JR, Ayers GD, Washington MK, Shi C (2014) Should mesenteric tumor deposits be included in staging of well differentiated small intestine neuroendocrine tumors? Mod Pathol 27:1288–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chambers AJ, Pasieka JL, Dixon E, Rorstad O (2010) Role of imaging in the preoperative staging of small bowel neuroendocrine tumors. J Am Coll Surg 211:620–627

    Article  PubMed  Google Scholar 

  50. Søreide O, Berstad T, Bakka A, Schrumpf E, Hanssen LE, Engh V, Bergan A, Flatmark A (1992) Surgical treatment as a principle in patients with advanced abdominal carcinoid tumors. Surgery 111:48–54

    PubMed  Google Scholar 

  51. Elias D, Lefevre JH, Duvillard P, Goéré D, Dromain C, Dumont F, Baudin E (2010) Hepatic metastases from neuroendocrine tumors with a thin slice CT scan and pathological examination: they are many more than you think. Ann Surg 251:307–10

    Article  PubMed  Google Scholar 

  52. Kimura N, Pilichowska M, Okamoto H et al (2000) Immunohistochemical expression of chromogranins A and B, prohormone convertases 2 and 3, and amidating enzyme in carcinoid tumors and pancreatic endocrine tumors. Mod Pathol 13:140–146

    Article  CAS  PubMed  Google Scholar 

  53. Al-Khafaji B, Noffsinger AE, Miller MA et al (1998) Immunohistologic analysis of gastrointestinal and pulmonary carcinoid tumors. Hum Pathol 29:992–9

    Article  CAS  PubMed  Google Scholar 

  54. Fahrenkamp AG, Wibbeke C, Winde G et al (1995) Immunohistochemical distribution of chromogranins A and B and secretogranin II in neuroendocrine tumours of the gastrointestinal tract. Virchows Arch 426:361–367

    Article  CAS  PubMed  Google Scholar 

  55. Sobin LH, Hjermstad BM, Sesterhenn IA et al (1986) Prostatic acid phosphatase activity in carcinoid tumors. Cancer 58:136–138

    Article  CAS  PubMed  Google Scholar 

  56. Barbareschi M, Roldo C, Zamboni G et al (2004) CDX-2 homeobox gene product expression in neuroendocrine tumors: its role as a marker of intestinal neuroendocrine tumors. Am J Surg Pathol 28:1169–1176

    Article  PubMed  Google Scholar 

  57. La Rosa S, Rigoli E, Uccella S et al (2004) CDX2 as a marker of intestinal EC-cells and related well-differentiated endocrine tumors. Virchows Arch 445:248–254

    Article  CAS  PubMed  Google Scholar 

  58. Jaffee IM, Rahmani M, Singhal MG et al (2006) Expression of the intestinal transcription factor CDX2 in carcinoid tumors is a marker of midgut origin. Arch Pathol Lab Med 130:1522–1526

    Article  PubMed  Google Scholar 

  59. Dabaja BS, Suki D, Pro B et al (2004) Adenocarcinoma of the small bowel: presentation, prognostic factors, and outcome of 217 patients. Cancer 101:518–26

    Article  PubMed  Google Scholar 

  60. Locher C, Malka D, Boige V et al (2005) Combination chemotherapy in advanced small bowel adenocarcinoma. Oncology 69:290–294

    Article  CAS  PubMed  Google Scholar 

  61. Overman MJ, Kopetz S, Wen S et al (2008) Chemotherapy with 5-fluorouracil and a platinum compound improves outcomes in metastatic small bowel adenocarcinoma. Cancer 113:2038–2045

    Article  CAS  PubMed  Google Scholar 

  62. Talamonti MS, Goetz LH, Rao S et al (2002) Primary cancers of the small bowel: analysis of prognostic factors and results of surgical management. Arch Surg 137:564–570

    Article  PubMed  Google Scholar 

  63. North JH, Pack MS (2000) Malignant tumors of the small intestine: a review of 144 cases. Am Surg 66:46–51

    Article  CAS  PubMed  Google Scholar 

  64. Frost DB, Mercado PD, Tyrell JS (1994) Small bowel cancer: a 30-year review. Ann Surg Oncol 1:290–295

    Article  CAS  PubMed  Google Scholar 

  65. Chen ZM, Ritter JH, Wang HL (2005) Differential expression of alpha-methylacyl coenzyme A racemase in adenocarcinomas of the small and large intestines. Am J Surg Pathol 29:890–896

    Article  PubMed  Google Scholar 

  66. Wong H, Chu P (2012) Immunohistochemical features of the gastrointestinal tract tumors. J Gastrointest Oncol 3(3):262–284

    PubMed  PubMed Central  Google Scholar 

  67. Johnson DE, Herndier BG, Medeiros LJ et al (1988) The diagnostic utility of the keratin profiles of hepatocellular carcinoma and cholangiocarcinoma. Am J Surg Pathol 12:187–197

    Article  CAS  PubMed  Google Scholar 

  68. Ehdaivand S. (2019) Serous carcinoma. PathologyOutlines.com website. https://www.pathologyoutlines.com/topic/ovarytumorserouscarcinoma.html. Accessed 1 Nov 2019

  69. Al-Hussaini M, Stockman A, Foster H, McCluggage WG (2004) WT-1 assists in distinguishing ovarian from uterine serous carcinoma and in distinguishing between serous and endometrioid ovarian carcinoma. Histopathology 44(2):109–115

    Article  CAS  PubMed  Google Scholar 

  70. Sumathi VP, Al-Hussaini M, Connolly LE, Fullerton L, McCluggage WG (2004) Endometrial stromal neoplasms are immunoreactive with WT-1 antibody. Int J Gynecol Pathol 23(3):241–247

    Article  CAS  PubMed  Google Scholar 

  71. Shimizu M, Toki T, Takagi Y et al (2000) Immunohistochemical detection of the Wilms’ tumor gene (WT1) in epithelial ovarian tumors. Int J Gynecol Pathol 19:158–163

    Article  CAS  PubMed  Google Scholar 

  72. McCluggage WG (2004) WT1 is of value in ascertaining the site of origin of serous carcinomas within the female genital tract. Int J Gynecol Pathol 23:97–99

    Article  PubMed  Google Scholar 

  73. Chen W, Husain A, Nelson GS et al (2017) Immunohistochemical profiling of endometrial serous carcinoma. Int J Gynecol Pathol 36:128–139

    Article  CAS  PubMed  Google Scholar 

  74. McCluggage WG (2008) Immunohistochemical markers as a diagnostic aid in ovarian pathology. Diagn Histopathol 14(8):335–351

    Article  Google Scholar 

  75. Davidson B (2008) New diagnostic and molecular characteristics of malignant mesothelioma. Ultrastruct Pathol 32:227–240

    Article  PubMed  Google Scholar 

  76. Battifora H, McCaughey WTE (1994) Tumors of the serosal membranes. Armed Forces Institute of Pathology, Washington DC

    Google Scholar 

  77. Husain AN, Colby T, Ordonez N et al (2013) International Mesothelioma Interest Group. Guidelines for pathologic diagnosis of malignant mesothelioma: 2012 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med 137(5):647–667

  78. Delhorme JB, Severac F, Averous G, Glehen O, Passot G, Bakrin N, Marchal F, Pocard M, Lo Dico R, Eveno C, Carrere S, Sgarbura O, Quenet F, Ferron G, Goéré D, Brigand C, French National Network of Peritoneal Surface Malignancies (RENAPE) (2018) Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for pseudomyxoma peritonei of appendicular and extra-appendicular origin. Br J Surg 105(6):668–676. https://doi.org/10.1002/bjs.10716

    Article  PubMed  Google Scholar 

  79. Bhatt A, Mishra S, Parikh L et al (2019) Essentials for pathological evaluation of peritoneal surface malignancies and synoptic reporting of cytoreductive surgery specimens—a review and evidence-based guide. Indian J Surg Oncol 332. https://doi.org/10.1007/s13193-019-00897-7

  80. Vang R, Gown AM, Barry TS et al (2006) Cytokeratins 7 and 20 in primary and secondary mucinous tumors of the ovary: analysis of coordinate immunohistochemical expression profiles and staining distribution in 179 cases. Am J Surg Pathol 30:1130–1139

    Article  PubMed  Google Scholar 

  81. Liu Y, Ishibashi H, Hirano M, Takeshita K, Mizumoto A, Ichinose M, Nishino E, Kashu I, Yamamoto Y, Sugarbaker PH, Yonemura Y (2015) Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy for pseudomyxoma peritonei arising from urachus. Ann Surg Oncol 22(8):2799–2805

    Article  PubMed  Google Scholar 

  82. Ronnett BM, Yemelyanova AV, Vang R et al (2008) Endocervical adenocarcinomas with ovarian metastases: analysis of 29 cases with emphasis on minimally invasive cervical tumours and the ability of the metastases to simulate primary ovarian neoplasms. Am J Surg Pathol 32:1835–1853

    Article  PubMed  Google Scholar 

  83. Cook DS, Attanoos RL, Jalloh SS, Gibbs AR (2000) “Mucin-positive” epithelial mesothelioma of the peritoneum: an unusual diagnostic pitfall. Histopathology 37:33–36

    Article  CAS  PubMed  Google Scholar 

  84. Facchetti F, Lonardi S, Gentili F et al (2007) Claudin 4 identifies a wide spectruof epithelial neoplasms and represents a very useful marker for carcinoma versus mesothelioma diagnosis in pleural and peritoneal biopsies and effusions. Virchows Arch 451:669–680

    Article  CAS  PubMed  Google Scholar 

  85. Facchetti F, Gentili F, Lonardi S, Bercich L, Santin A (2007) Claudin-4 in mesothelioma diagnosis. Histopathology 51:261–263

    Article  CAS  PubMed  Google Scholar 

  86. McCluggage WG, Kirk SJ (2000) Pregnancy associated endometriosis with pronounced stromal myxoid change. J Clin Pathol 53:241–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Diaz L, Okonkwo A, Solans EP, Bedrossian C, Rao MS (2002) Extensive myxoid change in well differentiated papillary mesothelioma of the pelvic peritoneum. Ann Diagn Pathol 6:164–167

    Article  PubMed  Google Scholar 

  88. Bhatt A, Ramakrishnan AS (2018) Rare indications for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. In: Bhatt A. (eds) Management of peritoneal metastases- cytoreductive surgery, HIPEC and beyond. Springer, Singapore

  89. Lee CH, Nucci MR (2015) Endometrial stromal sarcoma–the new genetic paradigm. Histopathology 67(1):1–19. https://doi.org/10.1111/his.12594

    Article  PubMed  Google Scholar 

  90. Lee CH, Ou WB, Marino-Enriquez A et al (2012) 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc Natl Acad Sci U S A 109:929–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chang KL, Crabtree GS, Lim-Tan SK et al (1990) Primary uterine endometrial stromal neoplasms. A clinicopathologic study of 117 cases. Am J Surg Pathol 14:415-438. 2

    Article  CAS  PubMed  Google Scholar 

  92. Evans HL (1982) Endometrial stromal sarcoma and poorly differentiated endometrial sarcoma. Cancer 50:2170–2182

    Article  CAS  PubMed  Google Scholar 

  93. Hendrickson MR, Tavassoli FA, Kempson RL (2003) Mesenchymal tumours and related lesions. In: . World HealthOrganization Classification of Tumours Pathology and Genetics of Tumours of the Breast and Female Genital Organ Lyon, France: IARC Press

  94. Norris HJ, Taylor HB (1966) Mesenchymal tumors of the uterus. I. A clinical and pathological study of 53 endometrial stromal tumors. Cancer 19:755–766

    Article  CAS  PubMed  Google Scholar 

  95. Chu PG, Arber DA, Weiss LM et al (2001) Utility of CD10 in distinguishing between endometrial stromal sarcoma and uterine smooth muscle tumors: an immunohistochemical comparison of 34 cases. Mod Pathol 14:465–471

    Article  CAS  PubMed  Google Scholar 

  96. McCluggage WG, Sumathi VP, Maxwell P (2001) CD10 is a sensitive and diagnostically useful immunohistochemical marker of normal endometrial stroma and of endometrial stromal neoplasms. Histopathology 39:273–278

    Article  CAS  PubMed  Google Scholar 

  97. Lee CH, Marino-Enriquez A, Ou W et al (2012) The clinicopathologic features of YWHAE-FAM22 endometrial stromal sarcomas: a histologically high-grade and clinically aggressive tumor. Am J Surg Pathol 36:641–653

    Article  PubMed  Google Scholar 

  98. Lee CH, Ali RH, Rouzbahman M et al (2012) Cyclin D1 as a diagnostic immunomarker for endometrial stromal sarcoma with YWHAE-FAM22 rearrangement. Am J Surg Pathol 36:1562–1570

    Article  PubMed  PubMed Central  Google Scholar 

  99. Klein WM, Kurman RJ (2003) Lack of expression of c-kit protein (CD117) in mesenchymal tumors of the uterus and ovary. Int J Gynecol Pathol 22:181–184

    Article  PubMed  Google Scholar 

  100. Nakayama M, Mitsuhashi T, Shimizu Y et al (2006) Immunohistochemical evaluation of KIT expression in sarcomas of the gynecologic region. Int J Gynecol Pathol 25(70–76):59

    Google Scholar 

  101. Caudell JJ, Deavers MT, Slomovitz BM et al (2005) Imatinib mesylate (gleevec)–targeted kinases are expressed in uterine sarcomas. Appl Immunohistochem Mol Morphol 13:167–170

    Article  CAS  PubMed  Google Scholar 

  102. Lee CH, Liang CW, Espinosa I (2010) The utility of discovered on gastrointestinal stromal tumor 1 (DOG1) antibody in surgical pathology-the GIST of it. Adv Anat Pathol 17:222–232

    Article  CAS  PubMed  Google Scholar 

  103. Hendrickson MR, Tavassoli FA, Kempson RL et al (2003) Mesenchymal tumours and related lesions. In: Tavassoli FA, Devilee P (eds) World Health Organization classification of tumours: pathology and genetics of tumours of the breast and female genital organs. IARC Press, Lyon, pp 236–243

    Google Scholar 

  104. Oliva E, Young RH, Amin MB et al (2002) An immunohistochemical analysis of endometrial stromal and smooth muscle tumors of the uterus: a study of 54 cases emphasizing the importance of using a panel because of overlap in immunoreactivity for individual antibodies. Am J Surg Pathol 26:403–412

    Article  PubMed  Google Scholar 

  105. Rizeq MN, van de Rijn M, Hendrickson MR et al (1994) A comparative immunohistochemical study of uterine smooth muscle neoplasms with emphasis on the epithelioid variant. Hum Pathol 25:671–677

    Article  CAS  PubMed  Google Scholar 

  106. Bodner-Adler B, Bodner K, Czerwenka K et al (2005) Expression of p16 protein in patients with uterine smooth muscle tumors: an immunohistochemical analysis. Gynecol Oncol 96:62–66

    Article  CAS  PubMed  Google Scholar 

  107. Atkins KA, Arronte N, Darus CJ et al (2008) The use of p16 in enhancing the histologic classification of uterine smooth muscle tumors. Am J Surg Pathol 32(98–102):39

    Google Scholar 

  108. O’Neill CJ, McBride HA, Connolly LE et al (2007) Uterine leiomyosarcomas are characterized by high p16, p53 and MIB1 expression in comparison with usual leiomyomas, leiomyoma variants and smooth muscle tumours of uncertain malignant potential. Histopathology 50(851–858):41

    Google Scholar 

  109. de Vos S, Wilczynski SP, Fleischhacker M et al (1994) p53 alterations in uterine leiomyosarcomas versus leiomyomas. Gynecol Oncol 54(205–208):43

    Google Scholar 

  110. Blom R, Guerrieri C, Stal O et al (1998) Leiomyosarcoma of the uterus: a clinicopathologic, DNA flow cytometric, p53, and mdm-2 analysis of 49 cases. Gynecol Oncol 68(54–61):42

    Google Scholar 

  111. Jeffers MD, Farquharson MA, Richmond JA et al (1995) p53 immunoreactivity and mutation of the p53 gene in smooth muscle tumours of the uterine corpus. J Pathol 177:65–70

    Article  CAS  PubMed  Google Scholar 

  112. Hall KL, Teneriello MG, Taylor RR et al (1997) Analysis of Ki-ras, p53, and MDM2 genes in uterine leiomyomas and leiomyosarcomas. Gynecol Oncol 65(330–335):44

    Google Scholar 

  113. Lasota J, Jasinski M, Sarlomo-Rikala M et al (1999) Mutations in exon 11 of c-Kit occur preferentially in malignant versus benign gastrointestinal stromal tumors and do not occur in leiomyomas or leiomyosarcomas. Am J Pathol 154:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tanimura TC, Nohara M et al (1980) Primary leiomyosarcoma of the omentum. Kurume Med J 27:101–105

    Article  CAS  PubMed  Google Scholar 

  115. Tsurumi H, Okada S, Koshino Y, Oyama M, Higaki H, Shimokawa K, Yamauchi O, Moriwaki H, Muto Y (1991) A case of leiomyoblastoma (epithelioid leiomyosarcoma) of the greater omentum Gastroenterol. Jpn 26(3):370–375

    CAS  Google Scholar 

  116. Mahon DE, Carp NZ, Goldhahn RT et al (1993) Primary leiomyosarcoma of the greater omentum: case report and review of the literature Am. Surg 59:160–163

    CAS  Google Scholar 

  117. Brañes A, Bustamante C, Valbuena J, Pimentel F, Quezada N (2016) Primary leiomyosarcoma of the greater omentum: a case report. Int J Surg Case Rep 28:317–320. https://doi.org/10.1016/j.ijscr.2016.10.025

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ishida H, Ishida J (1998) Primary tumours of the greater omentum. Eur Radiol 8(9):1598–1601

    Article  CAS  PubMed  Google Scholar 

  119. Scwartz RW, Reames M, McGrath PC et al (1991) Primary solid neoplasms of the greater omentum. Surgery 109:543–549

    Google Scholar 

  120. Stout AP, Hendry J, Purdie FJ (1963) Primary solid tumours of the greater omentum. Cancer 16:231–243

    Article  CAS  PubMed  Google Scholar 

  121. Fattar S, Morton PCG, Schulman A et al (1981) Radiological diagnosis of primary greater omental mass lesion Clin. Radiol 32:325–330

    Google Scholar 

  122. Weinberger HA, Ahmed MS (1997) Mesenchymal solid tumors of the omentum. Surgery 82:754–759

    Google Scholar 

  123. Virchow R (1863) Die Krankhaften Geschwülste. Berlin, Germany, Springer, Google Scholar

  124. Ewing J (1919) Neoplatic diseases. W.B. Saunders, Philadelphia, PA

    Google Scholar 

  125. Zhao S, Bellone S, Lopez S, Thakral D, Schwab C, English DP, Black J et al (2016) Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 113(43):12238–12243. https://doi.org/10.1073/pnas.1614120113

  126. Wada H, Enomoto T, Fujita M et al (1997) Molecular evidence that most but not all carcinosarcomas of the uterus are combination tumours. Cancer Res 57:5379–5385

    CAS  PubMed  Google Scholar 

  127. Banik T, Halder D, Gupta N, Dey P Malignant mixed Mullerian tumor of the uterus: diagnosis of a case by fine-needle aspiration cytology and review of literature. Diagnostic Cytopathology. In press

  128. Ahuja A, Safaya R, Prakash G, Kumar L, Shukla NK (2011) Primary mixed Mullerian tumor of the vagina—a case report with review of the literature. Pathol Res Pract 207(4):253–255

    Article  PubMed  Google Scholar 

  129. Sharma NK, Sorosky JI, Bender D, Fletcher MS, Sood AK (2005) Malignant mixed Mullerian tumor (MMMT) of the cervix. Gynecol Oncol 97(2):442–445

    Article  PubMed  Google Scholar 

  130. Duman BB, Kara IO, Gunaldi M, Ercolak V (2011) Malignant mixed Mullerian tumor of the ovary with two cases and review of the literature. Arch Gynecol Obstet 283(6):1363–1368

    Article  PubMed  Google Scholar 

  131. Shen YM, Xie YP, Xu L et al (2010) Malignant mixed Mullerian tumor of the fallopian tube: report of two cases and review of literature. Arch Gynecol Obstet 281(6):1023–1028

    Article  PubMed  Google Scholar 

  132. Brown L (2008) Pathology of uterine malignancies. Clin Oncol 20(6):433–447

    Article  CAS  Google Scholar 

  133. El-Nashar SA, Mariani A (2011) Uterine carcinosarcoma. Clin Obstet Gynecol 54(2):292–304

    Article  PubMed  Google Scholar 

  134. Mok JE, Kim YM, Jung MH, Kim KR, Kim DY, Kim JH et al (2006) Malignant mixed Mullerian tumors of the ovary: experience with cytoreductive surgery and platinum-based combination chemotherapy. Int J Gynecol Cancer 16:101–105

    Article  CAS  PubMed  Google Scholar 

  135. Boucher D, Tetu B (1994) Morphologic prognostic factors of malignant mixed Mullerian tumors of the ovary: a clinicopathologic study of 15 cases. Int J Gynecol Pathol 13(1):22–28

    Article  CAS  PubMed  Google Scholar 

  136. McBride M, Calhoun S (2019) Peritoneal carcinomatosis arising from primary anorectal melanoma. J Radiol Case Rep 13(4):28–37. https://doi.org/10.3941/jrcr.v13i4.3458

    Article  PubMed  PubMed Central  Google Scholar 

  137. Flanagan M et al (2018) Peritoneal metastases from extra-abdominal cancer — a population-based study. Eur J Surg Oncol 44:1811–1817

    Article  CAS  PubMed  Google Scholar 

  138. Lee ES, Ahn JH, Lee TS, Jeon HW (2014) Metastatic malignant melanoma with peritoneal seeding in a young woman: a case report. Obstet Gynecol Sci 57(3):240–3. https://doi.org/10.5468/ogs.2014.57.3.240

    Article  PubMed  PubMed Central  Google Scholar 

  139. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in oncology: occult primary (cancer of unknown primary [CUP]). NCCN. Available at http://www.nccn.org/professionals/physician_gls/pdf/occult.pdf. Version 1.2022 — September 2, 2021; Accessed: 18 Jun 2022

  140. Fizazi K, Greco FA, Pavlidis N, Daugaard G, Oien K, Pentheroudakis G et al (2015) Cancers of unknown primary site: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 26(Suppl 5):v133–v138

    Article  PubMed  Google Scholar 

  141. Bridgewater J et al (2008) Gene expression profiling may improve diagnosis in patients with carcinoma of unknown primary. Br J Cancer 98:1425–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pillai R et al (2011) Validation and reproducibility of a microar- ray-based gene expression test for tumor identification in formalin-fixed, paraffin-embedded specimens. J Mol Diagn 13:48–56

    Article  PubMed  PubMed Central  Google Scholar 

  143. Varadhachary GR et al (2008) Molecular profiling of carcinoma of unknown primary and correlation with clinical evaluation. J Clin Oncol 26:4442–4448

    Article  CAS  PubMed  Google Scholar 

  144. Hainsworth JD et al (2013) Molecular gene expression profiling to predict the tissue of origin and direct site-specific therapy in patients with carcinoma of unknown primary site: a prospective trial of the Sarah Cannon research institute. J Clin Oncol 31:217–223

    Article  CAS  PubMed  Google Scholar 

  145. Fizazi K et al (2019) LBA15_PR a phase III trial of empiric chemotherapy with cisplatin and gemcitabine or systemic treatment tailored by molecular gene expression analysis in patients with carcinomas of an unknown primary (CUP) site (GEFCAPI 04). Ann. Oncol 30:mdz394

    Article  Google Scholar 

  146. Greco FA et al (2010) Molecular profiling in unknown primary cancer: accuracy of tissue of origin prediction. Oncologist 15:500–506

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ross JS et al (2015) Comprehensive genomic profiling of carcinoma of unknown primary site: new routes to targeted therapies. JAMA Oncol 1:40–49

    Article  PubMed  Google Scholar 

  148. Tothill RW et al (2013) Massively-parallel sequencing assists the diagnosis and guided treatment of cancers of unknown primary. J Pathol 231:413–423

    Article  CAS  PubMed  Google Scholar 

  149. Gatalica Z et al (2018) Comprehensive analysis of cancers of unknown primary for the biomarkers of response to immune checkpoint blockade therapy. Eur J Cancer 94:179–186

    Article  PubMed  Google Scholar 

  150. Loffler H et al (2016) Molecular driver alterations and their clinical relevance in cancer of unknown primary site. Oncotarget 7:44322–44329

    Article  PubMed  PubMed Central  Google Scholar 

  151. Gatalica Z et al (2014) Comprehensive tumor profiling identifies numerous biomarkers of drug response in cancers of unknown primary site: analysis of 1806 cases. Oncotarget 5:12440–12447

    Article  PubMed  PubMed Central  Google Scholar 

  152. Varghese AM et al (2017) Clinical and molecular characterization of patients with cancer of unknown primary in the modern era. Ann Oncol 28:3015–3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kato S et al (2017) Utility of genomic analysis in circulating tumor DNA from patients with carcinoma of unknown primary. Cancer Res 77:4238–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Danesi R, Fogli S, Indraccolo S, Del Re M, Dei Tos AP, Leoncini L, Antonuzzo L, Bonanno L, Guarneri V, Pierini A, Amunni G, Conte P (2021) Druggable targets meet oncogenic drivers: opportunities and limitations of target-based classification of tumors and the role of Molecular Tumor Boards. ESMO Open 6(2):100040. https://doi.org/10.1016/j.esmoop.2020.100040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tanaka Y, Chiwaki F, Kojima S et al (2021) Multi-omic profiling of peritoneal metastases in gastric cancer identifies molecular subtypes and therapeutic vulnerabilities. Nat Cancer 2:962–977. https://doi.org/10.1038/s43018-021-00240-6

    Article  CAS  PubMed  Google Scholar 

  156. Wang R, Song S, Harada K, GhazanfariAmlashi F, Badgwell B, Pizzi MP et al (2020) Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response. Gut 69(1):18–31. https://doi.org/10.1136/gutjnl-2018-318070

    Article  CAS  PubMed  Google Scholar 

  157. Joseph NM, Chen YY, Nasr A et al (2017) Genomic profiling of malignant peritoneal mesothelioma reveals recurrent alterations in epigenetic regulatory genes BAP1, SETD2, and DDX3X. Mod Pathol 30:246–254

    Article  CAS  PubMed  Google Scholar 

  158. Deraco M. et al. (2020) Peritoneal mesothelioma: disease biology and patterns of peritoneal dissemination. In: Glehen O., Bhatt A. (eds) Pathology of peritoneal metastases. Springer, Singapore. https://doi.org/10.1007/978-981-15-3773-8_6

  159. Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL (2014) Secreted mucins in pseudomyxoma peritonei: pathophysiological significance and potential therapeutic prospects. Orphanet J Rare Dis 9:71. https://doi.org/10.1186/1750-1172-9-71

    Article  PubMed  PubMed Central  Google Scholar 

  160. Urick ME, Bell DW (2019) Clinical actionability of molecular targets in endometrial cancer. Nat Rev Cancer 19(9):510–521. https://doi.org/10.1038/s41568-019-0177-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Boilève A, Hilmi M, Delaye M, Tijeras-Raballand A, Neuzillet C (2021) Biomarkers in hepatobiliary cancers: what is useful in clinical practice? Cancers (Basel) 13(11):2708. https://doi.org/10.3390/cancers13112708

    Article  CAS  PubMed  Google Scholar 

  162. Hayashi H et al (2019) Randomized phase II trial comparing site-specific treatment based on gene expression profiling with carboplatin and paclitaxel for patients with cancer of unknown primary site. J Clin Oncol 37:570–579

    Article  CAS  PubMed  Google Scholar 

  163. Franko, J, Shi, Q, Meyers, JP et al. (17 more authors) (2016) Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol 17(12). pp. 1709–1719. ISSN 1470–2045. https://doi.org/10.1016/S1470-2045(16)30500-9

  164. Guinney J, Dienstmann R, Wang X et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21:1350–1356. https://doi.org/10.1038/nm.3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ubink I, van Eden WJ, Snaebjornsson P, Kok NFM, van Kuik J, van Grevenstein WMU, Laclé MM, Sanders J, Fijneman RJA, Elias SG, Borel Rinkes IHM, Aalbers AGJ, Kranenburg O (2018) Histopathological and molecular classification of colorectal cancer and corresponding peritoneal metastases. Br J Surg 105(2):e204–e211. https://doi.org/10.1002/bjs.10788

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditi Bhatt.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, A., Mishra, S. & Glehen, O. Histopathological Evaluation and Molecular Diagnostic Tests for Peritoneal Metastases with Unknown Primary Site—a Review. Indian J Surg Oncol 14 (Suppl 1), 15–29 (2023). https://doi.org/10.1007/s13193-022-01612-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13193-022-01612-9

Keywords

Navigation