Abstract
Breast cancer is emerging as the most common malignancy in Indian women. Mammography is one of the few screening modalities available to the modern world that has proved itself of much use by aiding early detection and treatment of non-palpable, node-negative breast cancers. However, due to its two-dimensional nature, many cases of malignancies are still missed, to be detected at a later date or by an alternate modality. In 2011, FDA approved the supplemental use of digital breast tomosynthesis (DBT) in screening and diagnostic set ups. The acquisition of multiple low-dose projection images of the compressed parenchyma provided a ‘third’ dimension to the mammogram whereby the breast tissue could be seen layer by layer on the workstation. It improves cancer detection rate, and reduces recall rate and false-positive findings by improving lesion characterization. The current review discusses the principle of DBT with a comprehensive study of the literature.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Availability of Data and Material
NA
Code Availability
NA
References
Malvia S, Bagadi SA, Dubey US, Saxena S (2017) Epidemiology of breast cancer in Indian women: breast cancer epidemiology. Asia Pac J Clin Oncol 13:289–295. https://doi.org/10.1111/ajco.12661
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492
Mathew A, George PS, Jagathnath Krishna KM et al (2019) Transition of cancer in populations in India. Cancer Epidemiol 58:111–120. https://doi.org/10.1016/j.canep.2018.12.003
Hooley RJ, Durand MA, Philpotts LE (2017) Advances in digital breast tomosynthesis. Am J Roentgenol 208:256–266. https://doi.org/10.2214/AJR.16.17127
Smith RA, Duffy SW, Gabe R, Tabar L, Yen AMF, Chen THH (2004) The randomized trials of breast cancer screening: what have we learned? Radiol Clin N Am 42:793–806. https://doi.org/10.1016/j.rcl.2004.06.014
Tabár L, Yen AM-F, Wu WY-Y, Chen SLS, Chiu SYH, Fann JCY, Ku MMS, Smith RA, Duffy SW, Chen THH (2015) Insights from the breast cancer screening trials: how screening affects the natural history of breast cancer and implications for evaluating service screening programs. Breast J 21:13–20. https://doi.org/10.1111/tbj.12354
Webb ML, Cady B, Michaelson JS, Bush DM, Calvillo KZ, Kopans DB, Smith BL (2014) A failure analysis of invasive breast cancer: most deaths from disease occur in women not regularly screened: most breast cancer deaths not screened. Cancer 120:2839–2846. https://doi.org/10.1002/cncr.28199
Popli MB, Teotia R, Narang M, Krishna H (2014) Breast positioning during mammography: mistakes to be avoided. Breast Cancer(Auckl) 8:BCBCR.S17617. https://doi.org/10.4137/BCBCR.S17617
Lee CH, Dershaw DD, Kopans D, Evans P, Monsees B, Monticciolo D, Brenner RJ, Bassett L, Berg W, Feig S, Hendrick E, Mendelson E, D'Orsi C, Sickles E, Burhenne LW (2010) Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J Am Coll Radiol 7:18–27. https://doi.org/10.1016/j.jacr.2009.09.022
Schünemann HJ, Lerda D, Quinn C, Follmann M, Alonso-Coello P, Rossi PG, Lebeau A, Nyström L, Broeders M, Ioannidou-Mouzaka L, Duffy SW, Borisch B, Fitzpatrick P, Hofvind S, Castells X, Giordano L, Canelo-Aybar C, Warman S, Mansel R, Sardanelli F, Parmelli E, Gräwingholt A, Saz-Parkinson Z, for the European Commission Initiative on Breast Cancer (ECIBC) Contributor Group (2020) Breast cancer screening and diagnosis: a synopsis of the European Breast Guidelines. Ann Intern Med 172:46–56. https://doi.org/10.7326/M19-2125
Kolb TM, Lichy J, Newhouse JH (2002) Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225:165–175. https://doi.org/10.1148/radiol.2251011667
Porter GJR, Evans AJ, Cornford EJ, Burrell HC, James JJ, Lee AHS, Chakrabarti J (2007) Influence of mammographic parenchymal pattern in screening-detected and interval invasive breast cancers on pathologic features, mammographic features, and patient survival. Am J Roentgenol 188:676–683. https://doi.org/10.2214/AJR.05.1950
Rangarajan K, Hari S, Thulkar S et al (2016) Characterization of lesions in dense breasts: does tomosynthesis help? Indian J Radiol Imaging 26:210. https://doi.org/10.4103/0971-3026.184416
Vedantham S, Karellas A, Vijayaraghavan GR, Kopans DB (2015) Digital breast tomosynthesis: state of the art. Radiology 277:663–684. https://doi.org/10.1148/radiol.2015141303
Chong A, Weinstein SP, McDonald ES, Conant EF (2019) Digital breast tomosynthesis: concepts and clinical practice. Radiology 292:1–14. https://doi.org/10.1148/radiol.2019180760
Jousi MO, Erkkilä J, Varjonen M, Soiva M, Hukkinen K, Blanco Sequeiros R (2019) A new breast tomosynthesis imaging method: continuous sync-and-shoot – technical feasibility and initial experience. Acta Radiol Open 8:205846011983625. https://doi.org/10.1177/2058460119836255
Tirada N, Li G, Dreizin D, Robinson L, Khorjekar G, Dromi S, Ernst T (2019) Digital breast tomosynthesis: physics, artifacts, and quality control considerations. RadioGraphics 39:413–426. https://doi.org/10.1148/rg.2019180046
Peppard HR, Nicholson BE, Rochman CM, Merchant JK, Mayo RC III, Harvey JA (2015) Digital breast tomosynthesis in the diagnostic setting: indications and clinical applications. RadioGraphics 35:975–990. https://doi.org/10.1148/rg.2015140204
Sechopoulos I, Ghetti C (2009) Optimization of the acquisition geometry in digital tomosynthesis of the breast: acquisition geometry optimization of breast tomosynthesis. Med Phys 36:1199–1207. https://doi.org/10.1118/1.3090889
Sechopoulos I (2013) A review of breast tomosynthesis. Part I. The image acquisition process: breast tomosynthesis review. I. Image acquisition. Med Phys 40:014301. https://doi.org/10.1118/1.4770279
Lee CH, Destounis SV, Friedewald SM, Newell MS (2013) Digital breast tomosynthesis (DBT) guidance (a supplement to ACR BI-RADS mammography 2013). American College of Radiology, Reston
Skaane P, Bandos AI, Gullien R, Eben EB, Ekseth U, Haakenaasen U, Izadi M, Jebsen IN, Jahr G, Krager M, Niklason LT, Hofvind S, Gur D (2013) Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology 267:47–56. https://doi.org/10.1148/radiol.12121373
Skaane P, Bandos AI, Gullien R, Eben EB, Ekseth U, Haakenaasen U, Izadi M, Jebsen IN, Jahr G, Krager M, Hofvind S (2013) Prospective trial comparing full-field digital mammography (FFDM) versus combined FFDM and tomosynthesis in a population-based screening programme using independent double reading with arbitration. Eur Radiol 23:2061–2071. https://doi.org/10.1007/s00330-013-2820-3
Caumo F, Bernardi D, Ciatto S, Macaskill P, Pellegrini M, Brunelli S, Tuttobene P, Bricolo P, Fantò C, Valentini M, Montemezzi S, Houssami N (2014) Incremental effect from integrating 3D-mammography (tomosynthesis) with 2D-mammography: increased breast cancer detection evident for screening centres in a population-based trial. Breast 23:76–80. https://doi.org/10.1016/j.breast.2013.11.006
Bernardi D, Caumo F, Macaskill P, Ciatto S, Pellegrini M, Brunelli S, Tuttobene P, Bricolo P, Fantò C, Valentini M, Montemezzi S, Houssami N (2014) Effect of integrating 3D-mammography (digital breast tomosynthesis) with 2D-mammography on radiologists’ true-positive and false-positive detection in a population breast screening trial. Eur J Cancer 50:1232–1238. https://doi.org/10.1016/j.ejca.2014.02.004
Ciatto S, Houssami N, Bernardi D, Caumo F, Pellegrini M, Brunelli S, Tuttobene P, Bricolo P, Fantò C, Valentini M, Montemezzi S, Macaskill P (2013) Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol 14:583–589. https://doi.org/10.1016/S1470-2045(13)70134-7
Friedewald SM, Rafferty EA, Rose SL, Durand MA, Plecha DM, Greenberg JS, Hayes MK, Copit DS, Carlson KL, Cink TM, Barke LD, Greer LN, Miller DP, Conant EF (2014) Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA 311:2499–2507. https://doi.org/10.1001/jama.2014.6095
Svahn TM, Chakraborty DP, Ikeda D, Zackrisson S, Do Y, Mattsson S, Andersson I (2012) Breast tomosynthesis and digital mammography: a comparison of diagnostic accuracy. BJR 85:e1074–e1082. https://doi.org/10.1259/bjr/53282892
Rafferty EA, Park JM, Philpotts LE, Poplack SP, Sumkin JH, Halpern EF, Niklason LT (2013) Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammography alone: results of a multicenter, multireader trial. Radiology 266:104–113. https://doi.org/10.1148/radiol.12120674
Wallis MG, Moa E, Zanca F, Leifland K, Danielsson M (2012) Two-view and single-view tomosynthesis versus full-field digital mammography: high-resolution X-Ray imaging observer study. Radiology 262:788–796. https://doi.org/10.1148/radiol.11103514
Kim JY, Kang HJ, Shin JK, Lee NK, Song YS, Nam KJ, Choo KS (2017) Biologic profiles of invasive breast cancers detected only with digital breast tomosynthesis. Am J Roentgenol 209:1411–1418. https://doi.org/10.2214/AJR.17.18195
Skaane P, Sebuødegård S, Bandos AI, Gur D, Østerås BH, Gullien R, Hofvind S (2018) Performance of breast cancer screening using digital breast tomosynthesis: results from the prospective population-based Oslo Tomosynthesis Screening Trial. Breast Cancer Res Treat 169:489–496. https://doi.org/10.1007/s10549-018-4705-2
Fontaine M, Tourasse C, Pages E, Laurent N, Laffargue G, Millet I, Molinari N, Taourel P (2019) Local tumor staging of breast cancer: digital mammography versus digital mammography plus tomosynthesis. Radiology 291:594–603. https://doi.org/10.1148/radiol.2019182457
McDonald ES, Oustimov A, Weinstein SP et al (2016) Effectiveness of digital breast tomosynthesis compared with digital mammography: outcomes analysis from 3 years of breast cancer screening. JAMA Oncol 2:737–743. https://doi.org/10.1001/jamaoncol.2015.5536
Haas BM, Kalra V, Geisel J, Raghu M, Durand M, Philpotts LE (2013) Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening. Radiology 269:694–700. https://doi.org/10.1148/radiol.13130307
Rose SL, Tidwell AL, Bujnoch LJ, Kushwaha AC, Nordmann AS, Sexton R Jr (2013) Implementation of breast tomosynthesis in a routine screening practice: an observational study. Am J Roentgenol 200:1401–1408. https://doi.org/10.2214/AJR.12.9672
Zackrisson S, Lång K, Rosso A, Johnson K, Dustler M, Förnvik D, Förnvik H, Sartor H, Timberg P, Tingberg A, Andersson I (2018) One-view breast tomosynthesis versus two-view mammography in the Malmö Breast Tomosynthesis Screening Trial (MBTST): a prospective, population-based, diagnostic accuracy study. Lancet Oncol 19:1493–1503. https://doi.org/10.1016/S1470-2045(18)30521-7
Ray KM, Turner E, Sickles EA, Joe BN (2015) Suspicious findings at digital breast tomosynthesis occult to conventional digital mammography: imaging features and pathology findings. Breast J 21:538–542. https://doi.org/10.1111/tbj.12446
Lourenco AP, Barry-Brooks M, Baird GL, Tuttle A, Mainiero MB (2015) Changes in recall type and patient treatment following implementation of screening digital breast tomosynthesis. Radiology 274:337–342. https://doi.org/10.1148/radiol.14140317
Park JM, Franken EA, Garg M et al (2007) Breast tomosynthesis: present considerations and future applications. RadioGraphics 27:S231–S240. https://doi.org/10.1148/rg.27si075511
Greenberg JS, Javitt MC, Katzen J, Michael S, Holland AE (2014) Clinical performance metrics of 3D digital breast tomosynthesis compared with 2D digital mammography for breast cancer screening in community practice. Am J Roentgenol 203:687–693. https://doi.org/10.2214/AJR.14.12642
Philpotts LE, Kalra VB, Crenshaw J, Butler RS (2013) How tomosynthesis optimizes patient work-up, throughput, and resource utilization [abstr]. In: Radiological Society of North America Scientific Assembly and Annual Meeting Program. Oak Brook, Ill: Radiological Society of North America, 191
Roth RG, Maidment ADA, Weinstein SP, et al Digital breast tomosynthesis: lessons learned from early clinical implementation. 34:15
Patel BK, Covington M, Pizzitola VJ, Lorans R, Giurescu M, Eversman W, Lewin J (2018) Initial experience of tomosynthesis-guided vacuum-assisted biopsies of tomosynthesis-detected (2D mammography and ultrasound occult) architectural distortions. Am J Roentgenol 210:1395–1400. https://doi.org/10.2214/AJR.17.18802
Alshafeiy TI, Nguyen JV, Rochman CM, Nicholson BT, Patrie JT, Harvey JA (2018) Outcome of architectural distortion detected only at breast tomosynthesis versus 2D mammography. Radiology 288:38–46. https://doi.org/10.1148/radiol.2018171159
Partyka L, Lourenco AP, Mainiero MB (2014) Detection of Mammographically occult architectural distortion on digital breast tomosynthesis screening: initial clinical experience. Am J Roentgenol 203:216–222. https://doi.org/10.2214/AJR.13.11047
Pujara AC, Hui J, Wang LC (2019) Architectural distortion in the era of digital breast tomosynthesis: outcomes and implications for management. Clin Imaging 54:133–137. https://doi.org/10.1016/j.clinimag.2019.01.004
Bahl M, Baker JA, Kinsey EN, Ghate SV (2015) Architectural distortion on mammography: correlation with pathologic outcomes and predictors of malignancy. Am J Roentgenol 205:1339–1345. https://doi.org/10.2214/AJR.15.14628
Zuley ML, Bandos AI, Ganott MA, Sumkin JH, Kelly AE, Catullo VJ, Rathfon GY, Lu AH, Gur D (2013) Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions. Radiology 266:89–95. https://doi.org/10.1148/radiol.12120552
Luparia A, Mariscotti G, Durando M, Ciatto S, Bosco D, Campanino PP, Castellano I, Sapino A, Gandini G (2013) Accuracy of tumour size assessment in the preoperative staging of breast cancer: comparison of digital mammography, tomosynthesis, ultrasound and MRI. Radiol Med 118:1119–1136. https://doi.org/10.1007/s11547-013-0941-z
Mun HS, Kim HH, Shin HJ, Cha JH, Ruppel PL, Oh HY, Chae EY (2013) Assessment of extent of breast cancer: comparison between digital breast tomosynthesis and full-field digital mammography. Clin Radiol 68:1254–1259. https://doi.org/10.1016/j.crad.2013.07.006
Mann RM, Veltman J, Barentsz JO, Wobbes T, Blickman JG, Boetes C (2008) The value of MRI compared to mammography in the assessment of tumour extent in invasive lobular carcinoma of the breast. Eur J Surg Oncol 34:135–142. https://doi.org/10.1016/j.ejso.2007.04.020
Raghu M, Durand MA, Andrejeva L, Goehler A, Michalski MH, Geisel JL, Hooley RJ, Horvath LJ, Butler R, Forman HP, Philpotts LE (2016) Tomosynthesis in the diagnostic setting: changing rates of BI-RADS final assessment over time. Radiology 281:54–61. https://doi.org/10.1148/radiol.2016151999
Sechopoulos I, Suryanarayanan S, Vedantham S, D'Orsi C, Karellas A (2006) Computation of the glandular radiation dose in digital tomosynthesis of the breast: computation of dose in digital breast tomosynthesis. Med Phys 34:221–232. https://doi.org/10.1118/1.2400836
Feng SSJ, Sechopoulos I (2012) Clinical digital breast tomosynthesis system: dosimetric characterization. Radiology 263:35–42. https://doi.org/10.1148/radiol.11111789
Svahn TM, Houssami N, Sechopoulos I, Mattsson S (2015) Review of radiation dose estimates in digital breast tomosynthesis relative to those in two-view full-field digital mammography. Breast 24:93–99. https://doi.org/10.1016/j.breast.2014.12.002
Sechopoulos I, Suryanarayanan S, Vedantham S, D'Orsi CJ, Karellas A (2007) Scatter radiation in digital tomosynthesis of the breast: scatter radiation in breast tomosynthesis. Med Phys 34:564–576. https://doi.org/10.1118/1.2428404
Hu Y-H, Zhao B, Zhao W (2008) Image artifacts in digital breast tomosynthesis: investigation of the effects of system geometry and reconstruction parameters using a linear system approach: image artifacts in digital breast tomosynthesis. Med Phys 35:5242–5252. https://doi.org/10.1118/1.2996110
Machida H, Yuhara T, Mori T, Ueno E, Moribe Y, Sabol JM (2010) Optimizing parameters for flat-panel detector digital tomosynthesis. RadioGraphics 30:549–562. https://doi.org/10.1148/rg.302095097
Tagliafico A, Mariscotti G, Durando M, Stevanin C, Tagliafico G, Martino L, Bignotti B, Calabrese M, Houssami N (2015) Characterisation of microcalcification clusters on 2D digital mammography (FFDM) and digital breast tomosynthesis (DBT): does DBT underestimate microcalcification clusters? Results of a multicentre study. Eur Radiol 25:9–14. https://doi.org/10.1007/s00330-014-3402-8
Spangler ML, Zuley ML, Sumkin JH, Abrams G, Ganott MA, Hakim C, Perrin R, Chough DM, Shah R, Gur D (2011) Detection and classification of calcifications on digital breast tomosynthesis and 2D digital mammography: a comparison. Am J Roentgenol 196:320–324. https://doi.org/10.2214/AJR.10.4656
Dang PA, Freer PE, Humphrey KL, Halpern EF, Rafferty EA (2014) Addition of Tomosynthesis to conventional digital mammography: effect on image interpretation time of screening examinations. Radiology 270:49–56. https://doi.org/10.1148/radiol.13130765
Mainiero MB, Moy L, Baron P, Didwania AD, Green ED, Heller SL et al (2017) ACR appropriateness criteria® breast cancer screening. J Am Coll Radiol 14:S383–S390
Lee CI, Cevik M, Alagoz O, Sprague BL, Tosteson ANA, Miglioretti DL, Kerlikowske K, Stout NK, Jarvik JG, Ramsey SD, Lehman CD (2015) Comparative effectiveness of combined digital mammography and tomosynthesis screening for women with dense breasts. Radiology 274:772–780. https://doi.org/10.1148/radiol.14141237
Indian Council of Medical Research. Three year report of Population Based Cancer Registries, 2009–2011. Bangalore: National Centre for Disease Informatics and Research/National Cancer Registry Programme, 2013
Buchberger W, DeKoekkoek-Doll P, Springer P, Obrist P, Dünser M (1999) Incidental findings on sonography of the breast: clinical significance and diagnostic workup. Am J Roentgenol 173:921–927. https://doi.org/10.2214/ajr.173.4.10511149
Kolb TM, Lichy J, Newhouse JH (1998) Occult cancer in women with dense breasts: detection with screening US--diagnostic yield and tumor characteristics. Radiology 207:191–199. https://doi.org/10.1148/radiology.207.1.9530316
Corsetti V, Houssami N, Ghirardi M, Ferrari A, Speziani M, Bellarosa S, Remida G, Gasparotti C, Galligioni E, Ciatto S (2011) Evidence of the effect of adjunct ultrasound screening in women with mammography-negative dense breasts: interval breast cancers at 1year follow-up. Eur J Cancer 47:1021–1026. https://doi.org/10.1016/j.ejca.2010.12.002
Venturini E, Losio C, Panizza P, Rodighiero MG, Fedele I, Tacchini S, Schiani E, Ravelli S, Cristel G, Panzeri MM, de Cobelli F, del Maschio A (2013) Tailored breast cancer screening program with microdose mammography, US, and MR imaging: short-term results of a pilot study in 40–49-year-old women. Radiology 268:347–355. https://doi.org/10.1148/radiol.13122278
Tagliafico AS, Mariscotti G, Valdora F, Durando M, Nori J, la Forgia D, Rosenberg I, Caumo F, Gandolfo N, Sormani MP, Signori A, Calabrese M, Houssami N (2018) A prospective comparative trial of adjunct screening with tomosynthesis or ultrasound in women with mammography-negative dense breasts (ASTOUND-2). Eur J Cancer 104:39–46. https://doi.org/10.1016/j.ejca.2018.08.029
Starikov A, Drotman M, Hentel K, Katzen J, Min RJ, Arleo EK (2016) 2D mammography, digital breast tomosynthesis, and ultrasound: which should be used for the different breast densities in breast cancer screening? Clin Imaging 40:68–71. https://doi.org/10.1016/j.clinimag.2015.10.001
Zuley ML, Guo B, Catullo VJ, Chough DM, Kelly AE, Lu AH, Rathfon GY, Lee Spangler M, Sumkin JH, Wallace LP, Bandos AI (2014) Comparison of two-dimensional synthesized mammograms versus original digital mammograms alone and in combination with tomosynthesis images. Radiology 271:664–671. https://doi.org/10.1148/radiol.13131530
Skaane P, Bandos AI, Eben EB, Jebsen IN, Krager M, Haakenaasen U, Ekseth U, Izadi M, Hofvind S, Gullien R (2014) Two-view digital breast tomosynthesis screening with synthetically reconstructed projection images: comparison with digital breast tomosynthesis with full-field digital mammographic images. Radiology 271:655–663. https://doi.org/10.1148/radiol.13131391
Zuckerman SP, Conant EF, Keller BM, Maidment ADA, Barufaldi B, Weinstein SP, Synnestvedt M, McDonald ES (2016) Implementation of synthesized two-dimensional mammography in a population-based digital breast tomosynthesis screening program. Radiology 281:730–736. https://doi.org/10.1148/radiol.2016160366
Nelson JS, Wells JR, Baker JA, Samei E (2016) How does c - view image quality compare with conventional 2D FFDM?: comparing c - view and FFDM image quality. Med Phys 43:2538–2547. https://doi.org/10.1118/1.4947293
Zuckerman SP, Maidment ADA, Weinstein SP, McDonald ES, Conant EF (2017) Imaging with synthesized 2D mammography: differences, advantages, and pitfalls compared with digital mammography. Am J Roentgenol 209:222–229. https://doi.org/10.2214/AJR.16.17476
Gur D, Zuley ML, Anello MI, Rathfon GY, Chough DM, Ganott MA, Hakim CM, Wallace L, Lu A, Bandos AI (2012) Dose reduction in digital breast tomosynthesis (DBT) screening using synthetically reconstructed projection images. Acad Radiol 19:166–171. https://doi.org/10.1016/j.acra.2011.10.003
Bahl M, Maunglay M, D’Alessandro HA, Lehman CD (2019) Comparison of upright digital breast tomosynthesis–guided versus prone stereotactic vacuum-assisted breast biopsy. Radiology 290:298–304. https://doi.org/10.1148/radiol.2018181788
Schrading S, Distelmaier M, Dirrichs T, Detering S, Brolund L, Strobel K, Kuhl CK (2015) Digital breast tomosynthesis–guided vacuum-assisted breast biopsy: initial experiences and comparison with prone stereotactic vacuum-assisted biopsy. Radiology 274:654–662. https://doi.org/10.1148/radiol.14141397
Amir T, Barafaldi B, Zuckerman SP, Maidment ADA, Conant EF (2018) Comparison between radiation dose of 2D digital versus digital tomosynthesis guided stereotactic breast biopsies: tomosynthesis wins! [abstr]. In: Radiological Society of North America scientific assembly and annual meeting program. Radiological Society of North America, Oak Brook
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Video 1
(MPEG 2.74 mb)
Rights and permissions
About this article
Cite this article
Dhamija, E., Gulati, M., Deo, S.V.S. et al. Digital Breast Tomosynthesis: an Overview. Indian J Surg Oncol 12, 315–329 (2021). https://doi.org/10.1007/s13193-021-01310-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13193-021-01310-y