Skip to main content
Log in

Abstract

Glycolysis is a universal pathway in the living cells. The complete pathway of glycolysis was elucidated in 1940. This pathway is often referred to as Embden–Meyerhof pathway in honor of the two biochemists that made a major contribution to the knowledge of glycolysis. The objective of the study was to review the published literature on glycolysis and relation to cancer. The material for this review was taken mostly from up-to-date biochemistry textbooks and electronic journals. To collect publications, PubMed and the Cochrane database of systematic reviews were used. Some other relevant references were collected from personal database of papers on glycolysis and cancer. Several glycolytic inhibitors are currently in preclinical and clinical development. Inhibition of glycolysis in cancer cells is a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. This article is an important topic to be considered by cancer researchers and those who treat cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Bacci G, Capanna R, Orlandi M (1985) Prognostic significance of serum lactic acid dehydrogenase in Ewing’s tumor of bone. Ric Clin Lab 15:89–96

    PubMed  CAS  Google Scholar 

  2. Veramendi J, Fernie AR, Leisse A, Willmitzer L, Trethewey RN (2002) Potato hexokinase 2 complements transgenic Arabidopsis plants deficient in hexokinase 1 but does not play a key role in tuber carbohydrate metabolism. Plant Mol Biol 49:491–501

    Article  PubMed  CAS  Google Scholar 

  3. Tang GQ, Hardin SC, Dewey R, Huber SC (2003) A novel C-terminal proteolytic processing of cytosolic pyruvate kinase, its phosphorylation and degradation by the proteasome in developing soybean seeds. Plant J 34:77–93

    Article  PubMed  CAS  Google Scholar 

  4. Goldblatt H, Cameron C (1953) Induced malignancy in cells from rat myocardium subjected to intermittent anaerobiosis during long propagation in vitro. J Exp Med 97:525–552

    Article  PubMed  CAS  Google Scholar 

  5. Druml W, Kleinberger G, Neumann E, Pichler M, Gassner A (1981) [Acute leukemia associated with lactic acidosis] [article in German]. Schweiz Med. Wochenschr 111:146–150

    CAS  Google Scholar 

  6. Allard MF, Schönekess BO, Henning SL, English DR, Lopaschuk GD (2008) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 267(2):742–750

    Google Scholar 

  7. Pérez-Rodríguez J, Sánchez-Jiménez F, Márquez FJ, Medina MA, Quesada AR, Núñez de Castro I (1987) Malate-citrate cycle during glycolysis and glutaminolysis in Ehrlich ascites tumor cells. Biochimie 69(5):469–474

    Article  PubMed  Google Scholar 

  8. Warburg O (1910) The metabolism of tumours. J Physiol Chem 56:66–305

    Google Scholar 

  9. Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277:23111–23115

    Article  PubMed  CAS  Google Scholar 

  10. Schwickert G, Walenta S, Sundfør K, Rofstad EK, Mueller-Klieser W (1995) Correlation of high lactate levels in human cervical cancer with incidence of metastasis. Cancer Res 55:4757–4759

    PubMed  CAS  Google Scholar 

  11. Sun RC, Fadia M, Dahlstrom JE, Parish CR, Board PG, Blackburn AC (2009) Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res Treat 120(1):253–260

    Article  PubMed  Google Scholar 

  12. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65(2):613–621

    PubMed  CAS  Google Scholar 

  13. Altenberg B, Greulich KO (2008) Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84(6):1014–1020

    Article  Google Scholar 

  14. Broadley K, Larsen L, Herst PM, Smith RA, Berridge MV, McConnell MJ (2011) The novel phloroglucinol PMT7 kills glycolytic cancer cells by blocking autophagy and sensitizing to nutrient stress. J Cell Biochem 112(7):1869–1879

    Article  PubMed  CAS  Google Scholar 

  15. Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434

    Article  PubMed  CAS  Google Scholar 

  16. Ha TK, Her NG, Lee MG, Ryu BK, Lee JH, Han J, Jeong SI, Kang MJ, Kim NH, Kim HJ, Chi SG (2012) Caveolin-1 increases aerobic glycolysis in colorectal cancers by stimulating HMGA1-mediated GLUT3 transcription. Cancer Res 72(16):4097–4109

    Article  PubMed  CAS  Google Scholar 

  17. Scatena R, Bottoni P, Pontoglio A, Mastrototaro L, Giardina B (2002) Glycolytic enzyme inhibitors in cancer treatment. Expert Opin Investig Drugs 17(10):1533–1545

    Article  Google Scholar 

  18. Fang R, Xiao T, Fang Z, Sun Y, Li F, Gao Y, Feng Y, Li L, Wang Y, Liu X, Chen H, Liu XY, Ji H (2012) MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol Chem 287(27):23227–2335

    Article  PubMed  CAS  Google Scholar 

  19. Granchi C, Minutolo F (2012) Anticancer agents that counteract tumor glycolysis. ChemMedChem 7(8):1318–1350

    Article  PubMed  CAS  Google Scholar 

  20. Sukhatme VP, Chan B (2012) Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence. FEBS Lett 586(16):2389–2395

    Article  PubMed  CAS  Google Scholar 

  21. Wang MD, Shi YF, Wang H, Wang JL, Ma WB, Wang RZ. Virtual mutagenesis of isocitrate dehydrogenase 1 involved in glioblastoma multiforme. Chin Med J 124(17):2611–2615)

  22. Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR (2002) The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184:3909–3916

    Article  PubMed  CAS  Google Scholar 

  23. Guyton A, Hall J (1996) Textbook of medical physiology, 9th edn. W.B. Saunders, Philadelphia, PA, pp 868–870

    Google Scholar 

  24. Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ (2011) Fructose 2,6-bisphosphate activates pyrophosphate: fructose 6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta 212:250–263

    Article  Google Scholar 

  25. Mulquiney PJ, Bubb WA, Kuchel PW. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: in vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using 13C and 31P NMR. Biochem J 342 (3):567–580

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akram, M. Mini-review on Glycolysis and Cancer. J Canc Educ 28, 454–457 (2013). https://doi.org/10.1007/s13187-013-0486-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13187-013-0486-9

Keywords

Navigation