Skip to main content

Advertisement

Log in

Pharmacologic Treatment of Opioid Use Disorder: a Review of Pharmacotherapy, Adjuncts, and Toxicity

  • Review
  • Published:
Journal of Medical Toxicology Aims and scope Submit manuscript

Abstract

Opioid use disorder continues to be a significant source of morbidity and mortality in the USA and the world. Pharmacologic treatment with methadone and buprenorphine has been shown to be effective at retaining people in treatment programs, decreasing illicit opioid use, decreasing rates of hepatitis B, and reducing all cause and overdose mortality. Unfortunately, barriers exist in accessing these lifesaving medications: users wishing to start buprenorphine therapy require a waivered provider to prescribe the medication, while some states have no methadone clinics. As such, users looking to wean themselves from opioids or treat their opioid dependence will turn to alternative agents. These agents include using prescription medications, like clonidine or gabapentin, off-label, or over the counter drugs, like loperamide, in supratherapeutic doses. This review provides information on the pharmacology and the toxic effects of pharmacologic agents that are used to treat opioid use disorder. The xenobiotics reviewed in depth include buprenorphine, clonidine, kratom, loperamide, and methadone, with additional information provided on lofexidine, akuamma seeds, kava, and gabapentin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAPCC NPDS:

American Association of Poison Control Centers’ National Poison Data System

ADHD:

Attention-deficit hyperactivity disorder

BUP:

Buprenorphine and buprenorphine/naloxone

CNS:

Central nervous system

COWS:

Clinical Opiate Withdrawal Scale

CYP:

Cytochrome P450

DEA:

Drug Enforcement Agency

ECG:

Electrocardiogram

EDDP:

2-Ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine

FDA:

Food and Drug Administration

GABA:

γ-Amino butyric acid

hERG:

Human ether-a-go-go-related gene

I-1:

Imidazoline-1

IKr :

Potassium rectifier channel

IV:

Intravenous

MAT:

Medication-assisted treatment

MME:

Morphine milligram equivalents

OUD:

Opioid use disorder

QTcF:

Fridericia rate-corrected QT

P-gp:

P-glycoprotein

RADARS:

Researched Abuse, Diversion, and Addiction-Related Surveillance

TdP:

Torsades de pointes

References

  1. Shah A, Hayes CJ, Martin BC. Characteristics of initial prescription episodes and likelihood of long-term opioid use—United States, 2006–2015. MMWR Morb Mortal Wkly Rep. 2017;66(10):265–9.

    PubMed  PubMed Central  Google Scholar 

  2. Jones CM, Logan J, Gladden RM, Bohm MK. Vital signs: demographic and substance use trends among heroin users—United States, 2002-2013. MMWR Morb Mortal Wkly Rep. 2015;64(26):719–25.

    PubMed  PubMed Central  Google Scholar 

  3. Longo DL, Compton WM, Jones CM, Baldwin GT. Relationship between nonmedical prescription-opioid use and heroin use. N Engl J Med. 2016;374(2):154–63.

    Google Scholar 

  4. Grau LE, Dasgupta N, Grau LE, Dasgupta N, Harvey AP, Grau LE, et al. Illicit use of opioids: is OxyContin® a “gateway drug”? Am J Addict. 2007;16(3):166–73.

    PubMed  Google Scholar 

  5. Cicero TJ, Ellis MS, Surratt HL, Kurtz SP. The changing face of heroin use in the United States: a retrospective analysis of the past 50 years. JAMA Psychiatry. 2014;71(7):821–6.

    PubMed  Google Scholar 

  6. Jones CM. Heroin use and heroin use risk behaviors among nonmedical users of prescription opioid pain relievers—United States, 2002–2004 and 2008–2010. Drug Alcohol Depend. 2013;132(1–2):95–100 Elsevier Ireland Ltd.

    PubMed  Google Scholar 

  7. Rudd RA, Seth P, David F, Scholl L. Increases in drug and opioid-involved overdose deaths—United States, 2010–2015. MMWR Morb Mortal Wkly Rep. 2016;65(5051):1445–52.

    PubMed  Google Scholar 

  8. Guy GP, Zhang K, Bohm MK, Losby J, Lewis B, Young R, et al. Vital signs: changes in opioid prescribing in the United States, 2006–2015. MMWR Morb Mortal Wkly Rep. 2017;66(26):697–704.

    PubMed  PubMed Central  Google Scholar 

  9. Levy B, Paulozzi L, Mack KA, Jones CM. Trends in opioid analgesic-prescribing rates by specialty, U.S., 2007-2012. Am J Prev Med. 2015;49(3):409–13 Elsevier.

    PubMed  PubMed Central  Google Scholar 

  10. University of Wisconsin Pain & Policy Studies Group. Global opioid consumption. [Internet]. 2015. Available from: http://www.painpolicy.wisc.edu/global.

  11. Haffajee RL, Mello MM, Zang F, Zaslavsky AM, Larochelle MR, Wharam JF. Four states with robust prescription drug monitoring programs reduced opioid dosages. Health Aff. 2018;37(6).

    PubMed  Google Scholar 

  12. Seth P, Rudd RA, Noonan RK, Haegerich TM. Quantifying the epidemic of prescription opioid overdose deaths. Am J Public Health. 2018;108(4):500–2.

    PubMed  Google Scholar 

  13. Center for Behavioral Health Statistics and Quality. 2015 national survey on drug use and health: detailed tables. Rockville: Substance Abuse and Mental Health Services Administration; 2016.

    Google Scholar 

  14. Schuchat A, Houry D, Guy GP. New data on opiod use and prescribing in the United States. JAMA. 2017;30329: Published online July 6, 2017. https://doi.org/10.1001/jama.20.

  15. Strain EC, Harrison JA, Bigelow GE. Induction of opioid-dependent individuals onto buprenorphine and buprenorphine/naloxone soluble films. Clin Pharmacol Ther. 2011;89(3):443–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. United States Congress. Drug addiction treatment act of 2000. [Internet]. 2000 [cited 2017 Jan 1]. Available from: https://www.deadiversion.usdoj.gov/pubs/docs/dwp_buprenorphine.htm.

  17. Substance Abuse and Mental Health Services Administration. Apply to increase patient limits [Internet]. 2017 [cited 2018 Jul 11]. p. 2728. Available from: https://www.samhsa.gov/medication-assisted-treatment/buprenorphine-waiver-management/increase-patient-limits.

  18. D’Onofrio G, Chawarski MC, O’Connor PG, Pantalon MV, Busch SH, Owens PH, et al. Emergency department-initiated buprenorphine for opioid dependence with continuation in primary care: outcomes during and after intervention. J Gen Intern Med. 2017;32(6):660–6.

    PubMed  PubMed Central  Google Scholar 

  19. D’Onofrio G, O’Connor PG, Pantalon MV, Chawarski MC, Busch SH, Owens PH, et al. Emergency department-initiated buprenorphine/naloxone treatment for opioid dependence: a randomized clinical trial. JAMA. 2015;313(16):1636–44.

    PubMed  PubMed Central  Google Scholar 

  20. Stein BD, Gordon AJ, Dick AW, Burns RM, Pacula RL, Farmer CM, et al. Supply of buprenorphine waivered physicians: the influence of state policies. J Subst Abuse Treat. Elsevier Inc. 2015;48(1):104–11.

    PubMed  Google Scholar 

  21. Hadland SE, Frank Wharam JW, Schuster MA, Zhang F, Samet JH, Larochelle MR. Trends in receipt of buprenorphine and naltrexone for opioid use disorder among adolescents and young adults, 2001–2014. JAMA Pediatr. 2017;171:747–55.

    PubMed  PubMed Central  Google Scholar 

  22. Bazazi AR, Yokell M, Fu JJ, Rich JD, Zaller ND. Illicit use of buprenorphine/naloxone among injecting and noninjecting opioid users. J Addict Med. 2011;5(3):175–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Johanson CE, Arfken CL, di Menza S, Schuster CR. Diversion and abuse of buprenorphine: findings from national surveys of treatment patients and physicians. Drug Alcohol Depend. Elsevier Ireland Ltd. 2012;120(1–3):190–5.

    CAS  PubMed  Google Scholar 

  24. Wesson DR, Ling W. The Clinical Opiate Withdrawal Scale (COWS). J Psychoactive Drugs. 2003;35(2):253–9.

    PubMed  Google Scholar 

  25. McNicholas L, Consensus Panel Chair. Clinical guidelines for the use of buprenorphine in the treatment of opioid addiction [Internet]. Vol. 40, Treatment improvement protocol. 2004. 1–172 p. Available from: http://www.buprenorphine.samhsa.gov/Bup_Guidelines.pdf.

  26. Schuckit MA. Treatment of opioid-use disorders. N Engl J Med. 2016;375(4):357–68.

    PubMed  Google Scholar 

  27. Orman JS, Keating GM, Renzelli CM, Robinson SE. Buprenorphine/naloxone. A review of its use in the treatment of opioid dependence. Drugs. 2009;69(5):577–607.

    CAS  PubMed  Google Scholar 

  28. Lutfy K, Cowan A. Buprenorphine: a unique drug with complex pharmacology. Curr Neuropharmacol. 2004;2(4):395–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang P, Kehner GB, Cowan A, Liu-Chen LY. Comparison of pharmacological activities of buprenorphine and norbuprenorphine: norbuprenorphine is a potent opioid agonist. J Pharmacol Exp Ther. 2001;297(2):688–95.

    CAS  PubMed  Google Scholar 

  30. Robinson SE. Buprenorphine: an analgesic with an expanding role in the treatment of opioid addiction. CNS Drug Rev. 2002;8(4):377–90.

    CAS  PubMed  Google Scholar 

  31. Leander J. Buprenorphine has potent kappa opioid receptor antagonist activity. Neuropharmacology. 1987;26(9):1445–7.

    CAS  PubMed  Google Scholar 

  32. Johnson RE, Fudala PJ, Payne R. Buprenorphine: considerations for pain management. J Pain Symptom Manag. 2005;29(3):297–326.

    CAS  Google Scholar 

  33. Goldfrank’s toxicologic emergencies. 10th ed. McGraw-Hill Education/Medical; 2015. 493–494 p.

  34. Mendelson J, Upton RA, Everhart ET, Jacob P 3rd, Jones RT. Bioavailability of sublingual buprenorphine. J Clin Pharmacol. 1997;37(1):31–7.

    CAS  PubMed  Google Scholar 

  35. Chiang C. Pharmacokinetics of the combination tablet of buprenorphine and naloxone. Drug Alcohol Depend. 2003;70(2):S39–47.

    CAS  PubMed  Google Scholar 

  36. Alhaddad H, Cisternino S, Declèves X, Tournier N, Schlatter J, Chiadmi F, et al. Respiratory toxicity of buprenorphine results from the blockage of P-glycoprotein-mediated efflux of norbuprenorphine at the blood–brain barrier in mice. Crit Care Med. 2012;40(12):3215–23.

    CAS  PubMed  Google Scholar 

  37. FDA approves first generic versions of Suboxone sublingual film, which may increase access to treatment for opioid dependence [Internet]. [cited 2018 Oct 9]. Available from: https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm610807.htm.

  38. BELBUCA (buprenorphine) buccal film [Internet]. [cited 2018 Oct 9]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207932Orig1s000TOC.cfm.

  39. Substance Abuse and Mental Health Services Administration, Center for Behavioral Health Statistics and Quality. (January 29 2013). The DAWN Report: emergency department visits involving buprenorphine. Rockville, MD. The CBHSQ Report. 2013.

  40. Mark T, Kassed C, Vandivort-Warren R, Levit K, Kranzler H. Alcohol and opioid dependence medications: prescription trends, overall and by physician specialty. Drug Alcohol Depend. 2009;99(301):345–9.

    PubMed  Google Scholar 

  41. Daniulaityte R, Carlson R, Brigham G, Cameron D, Sheth A, et al. “Sub is a weird drug:” a web-based study of lay attitudes about use of buprenorphine to self-treat opioid withdrawal symptoms. Am J Addict. 2015;24(5):403–9.

    PubMed  PubMed Central  Google Scholar 

  42. Genberg BL, Gillespie M, Schuster CR, Johanson CE, Astemborski J, Kirk GD, et al. Prevalence and correlates of street-obtained buprenorphine use among current and former injectors in Baltimore, Maryland. Addict Behav. Elsevier Ltd. 2013;38(12):2868–73.

    PubMed  PubMed Central  Google Scholar 

  43. Bi-Mohammed Z, Wright NM, Hearty P, King N, Gavin H. Prescription opioid abuse in prison settings: a systematic review of prevalence, practice and treatment responses. Drug Alcohol Depend. Elsevier Ireland Ltd. 2017;171:122–31.

    PubMed  Google Scholar 

  44. Mowry JB, Spyker DA, Brooks DE, Zimmerman A, Schauben JL. 2015 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 33rd annual report. Clin Toxicol. 2016;54(10):924–1109.

    CAS  Google Scholar 

  45. Paone D, Tuazon E, Stajic M, Sampson B, Allen B, Mantha S, et al. Buprenorphine infrequently found in fatal overdose in New York City. Drug Alcohol Depend. Elsevier Ireland Ltd. 2015;155:298–301.

    CAS  PubMed  Google Scholar 

  46. Walsh SL, Preston KL, Stitzer ML, Cone EJ, Bigelow GE. Clinical pharmacology of buprenorphine: ceiling effects at high doses. Clin Pharmacol Ther. 1994;55(5):569–80.

    CAS  PubMed  Google Scholar 

  47. Walsh SL, Preston KL, Bigelow GE, Stitzer ML. Acute administration of buprenorphine in humans: partial agonist and blockade effects. J Pharmacol Exp Ther. 1995;274(1):361–72.

    CAS  PubMed  Google Scholar 

  48. Dahan A, Yassen A, Romberg R, Sarton E, Teppema L, Olofsen E, et al. Buprenorphine induces ceiling in respiratory depression but not in analgesia. Br J Anaesth. 2006;96(5):627–32.

    CAS  PubMed  Google Scholar 

  49. Lee SC, Klein-Schwartz W, Doyon S, Welsh C. Comparison of toxicity associated with nonmedical use of benzodiazepines with buprenorphine or methadone. Drug Alcohol Depend. Elsevier Ireland Ltd. 2014;138(1):118–23.

    CAS  PubMed  Google Scholar 

  50. Häkkinen M, Launiainen T, Vuori E, Ojanperä I. Benzodiazepines and alcohol are associated with cases of fatal buprenorphine poisoning. Eur J Clin Pharmacol. 2012;68(3):301–9.

    PubMed  Google Scholar 

  51. Bardy G, Cathala P, Eiden C, Baccino E, Petit P, Mathieu O. An unusual case of death probably triggered by the association of buprenorphine at therapeutic dose with ethanol and benzodiazepines and with very low norbuprenorphine level. J Forensic Sci. 2015;60(s1):S269–71.

    CAS  PubMed  Google Scholar 

  52. Hayes BD, Klein-Schwartz W, Doyon S. Toxicity of buprenorphine overdoses in children. Pediatrics. 2008;121(4):e782–6.

    PubMed  Google Scholar 

  53. Thomas KC, Malheiro M, Crouch B, Porucznik C. Buprenorphine prescribing practices and exposures reported to a poison center—Utah, 2002-2011. MMWR Morb Mortal Wkly Rep. 2012;61(49):997–1001.

    Google Scholar 

  54. Bellot B, Michel F, Thomachot L, Chaumoitre K, Battaglia F, Lagier P. Acute leukoencephalopathy after buprenorphine intoxication in a 2-year-old child. Eur J Paediatr Neurol. Elsevier Ltd. 2011;15(4):368–71.

    PubMed  Google Scholar 

  55. Geib A-J, Babu K, Ewald MB, Boyer EW. Adverse effects in children after unintentional buprenorphine exposure. Pediatrics. 2006;118(4):1746–51.

    PubMed  Google Scholar 

  56. Kim HK, Smiddy M, Hoffman RS, Nelson LS. Buprenorphine may not be as safe as you think: a pediatric fatality from unintentional exposure. Pediatrics. 2012;130(6):e1700–3.

    PubMed  Google Scholar 

  57. Lavonas EJ, Banner W, Bradt P, Bucher-Bartelson B, Brown KR, Rajan P, et al. Root causes, clinical effects, and outcomes of unintentional exposures to buprenorphine by young children. J Pediatr. Elsevier Ltd. 2013;163(5):1377–83.e1-3.

    CAS  PubMed  Google Scholar 

  58. Lovegrove MC, Mathew J, Hampp C, Governale L, Wysowski DK, Budnitz DS. Emergency hospitalizations for unsupervised prescription medication ingestions by young children. Pediatrics. 2014;134(4):e1009–16.

    PubMed  PubMed Central  Google Scholar 

  59. Knopf A. Reckitt pulls suboxone tablets, citing pediatric exposures [Internet]. 2012 [cited 2017 Sep 5]. Available from: http://www.alcoholismdrugabuseweekly.com/article-detail/reckitt-pulls-suboxone-tablets-citing-pediatric-exposures.aspx.

  60. Budnitz DS, Lovegrove MC, Sapiano MRP, Mathew J, Kegler SR, Geller AI, et al. Notes from the field: pediatric emergency department visits for buprenorphine/naloxone ingestion—United States, 2008-2015. MMWR Morb Mortal Wkly Rep. 2016;65(41):1148–9.

    PubMed  Google Scholar 

  61. Toce MS, Burns MM, O’Donnell KA. Clinical effects of unintentional pediatric buprenorphine exposures: experience at a single tertiary care center. Clin Toxicol. Informa UK Limited, trading as Taylor 8 Francis Group. 2017;55(1):12–7.

    Google Scholar 

  62. Lam J, Baello S, Iqbal M, Kelly LE, Shannon PT, Chitayat D, et al. The ontogeny of P-glycoprotein in the developing human blood–brain barrier: implication for opioid toxicity in neonates. Pediatr Res. 2015;78(4):417–21.

    CAS  PubMed  Google Scholar 

  63. Daood M, Tsai C, Ahdab-Barmada M, Watchko JF. ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics. 2008;39(4):211–8.

    CAS  PubMed  Google Scholar 

  64. Mégarbane B, Alhaddad H. P-glycoprotein should be considered as an additional factor contributing to opioid-induced respiratory depression in paediatrics: the buprenorphine example. Br J Anaesth. 2013;110(5):842.

    PubMed  Google Scholar 

  65. Brown SM, Campbell SD, Crafford A, Regina KJ, Holtzman MJ, Kharasch ED. P-glycoprotein is a major determinant of norbuprenorphine brain exposure and antinociception. J Pharmacol Exp Ther. 2012;343(1):53–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Park HJ, Shinn HK, Ryu SH, Lee HS, Park CS, Kang JH. Genetic polymorphisms in the ABCB1 gene and the effects of fentanyl in Koreans. Clin Pharmacol Ther. 2007;81(4):539–46.

    CAS  PubMed  Google Scholar 

  67. Lee S, Klein-Schwartz W, Welsh C, Doyon S. Medical outcomes associated with nonmedical use of methadone and buprenorphine. J Emerg Med. Elsevier Ltd. 2013;45(2):199–205.

    PubMed  Google Scholar 

  68. Van Dorp E, Yassen A, Sarton E, Romberg R, Olofsen E, Teppema L, et al. Naloxone reversal of buprenorphine-induced respiratory depression. Anesthesiology. 2006;105(1):51–7.

    PubMed  Google Scholar 

  69. Rzasa Lynn R, Galinkin JL. Naloxone dosage for opioid reversal: current evidence and clinical implications. Ther Adv Drug Saf. 2018;9(1):63–88.

    CAS  PubMed  Google Scholar 

  70. McDonald EM, Kennedy-Hendricks A, McGinty EE, Shields WC, Barry CL, Gielen AC. Safe storage of opioid pain relievers among adults living in households with children. Pediatrics. 2017;139(3):e20162161.

    PubMed  Google Scholar 

  71. Mattick RP, Breen C, Kimber J, Davoli M. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. In: Cochrane Database of Systematic Reviews. 2014. p. 1–61.

  72. Nielsen S, Larance B, Degenhardt L, Gowing L, Kehler C, Lintzeris N. Opioid agonist treatment for pharmaceutical opioid dependent people. Cochrane Database Syst Rev. 2016;2016(5).

  73. Sordo L, Barrio G, Bravo MJ, Indave BI, Degenhardt L, Wiessing L, et al. Mortality risk during and after opioid substitution treatment: systematic review and meta-analysis of cohort studies. BMJ. 2017;357357:j1550.

    Google Scholar 

  74. Davis JM, Shenberger J, Terrin N, Breeze JL, Hudak M, Wachman EM, et al. Comparison of safety and efficacy of methadone vs morphine for treatment of neonatal abstinence syndrome: a randomized clinical trial. JAMA Pediatr. 2018;02111:1–8.

    Google Scholar 

  75. Salsitz E, Wiegand T. Pharmacotherapy of opioid addiction: “putting a real face on a false demon.”. J Med Toxicol. 2016;12(1):58–63.

    CAS  PubMed  Google Scholar 

  76. Kristensen K, Christensen CB, Christrup LL. The mu1, mu2, delta, kappa opioid receptor binding profiles of methadone stereoisomers and morphine. Life Sci. 1995;56(2):PL45–50.

    CAS  PubMed  Google Scholar 

  77. Gorman AL, Elliott KJ, Inturrisi CE. The d- and l-isomers of methadone bind to the non-competitive site on the N-methyl-D-aspartate (NMDA) receptor in rat forebrain and spinal cord. Neurosci Lett. 1997;223(1):5–8.

    CAS  PubMed  Google Scholar 

  78. Dale O, Hoffer C, Sheffels P, Kharasch ED. Disposition of nasal, intravenous, and oral methadone in healthy volunteers. Clin Pharmacol Ther. 2002;72(5):536–45.

    CAS  PubMed  Google Scholar 

  79. Wolff K, Rostami-Hodjegan A, Shires S, Hay AW, Feely M, Calvert R, et al. The pharmacokinetics of methadone in healthy subjects and opiate users. Br J Clin Pharmacol. 1997;44(4):325–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Meresaar U, Nilsson MI, Holmstrand J, Änggård E. Single dose pharmacokinetics and bioavailability of methadone in man studied with a stable isotope method. Eur J Clin Pharmacol. 1981;20(6):473–8.

    CAS  PubMed  Google Scholar 

  81. Fredheim OMS, Moksnes K, Borchgrevink PC, Kaasa S, Dale O. Clinical pharmacology of methadone for pain. Acta Anaesthesiol Scand. 2008;52(7):879–89.

    CAS  PubMed  Google Scholar 

  82. Eap CB, Cuendet C, Baumann P. Binding of d-methadone, l-methadone, and dl-methadone to proteins in plasma of healthy volunteers: role of the variants of alpha 1-acid glycoprotein. Clin Pharmacol Ther. 1990;47(3):338–46.

    CAS  PubMed  Google Scholar 

  83. Auret K, Roger Goucke C, Ilett KF, Page-Sharp M, Boyd F, Oh TE. Pharmacokinetics and pharmacodynamics of methadone enantiomers in hospice patients with cancer pain. Ther Drug Monit. 2006;28(3):359–66.

    CAS  PubMed  Google Scholar 

  84. Kharasch ED, Stubbert K. Role of cytochrome P4502B6 in methadone metabolism and clearance. J Clin Pharmacol. 2013;53(3):305–13.

    PubMed  PubMed Central  Google Scholar 

  85. Zanger UM, Klein K. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front Genet. 2013;4:1–12.

    CAS  Google Scholar 

  86. Dennis BB, Bawor M, Thabane L, Sohani Z, Samaan Z. Impact of ABCB1 and CYP2B6 genetic polymorphisms on methadone metabolism, dose and treatment response in patients with opioid addiction: a systematic review and meta-analysis. PLoS One. 2014;9(1).

    PubMed  PubMed Central  Google Scholar 

  87. Kharasch ED, Regina KJ, Blood J, Friedel C. Methadone pharmacogenetics: CYP2B6 polymorphisms determine plasma concentrations, clearance, and metabolism. Anesthesiology. 2015;123(5):1142–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hamilton SP, Nunes EV, Janal M, Weber L. The effect of sertraline on methadone plasma levels in methadone-maintenance patients. Am J Addict. 2000;9(1):63–9.

    CAS  PubMed  Google Scholar 

  89. Walsky RL, Astuccio AV, Obach RS. Evaluation of 227 drugs for in vitro inhibition of cytochrome P450 2B6. J Clin Pharmacol. 2006;46(12):1426–38.

    CAS  PubMed  Google Scholar 

  90. Meemken L, Hanhoff N, Tseng A, Christensen S, Gillessen A. Drug-drug interactions with antiviral agents in people who inject drugs requiring substitution therapy. Ann Pharmacother. 2015;49(7):796–807.

    CAS  PubMed  Google Scholar 

  91. Dinis-Oliveira RJ. Metabolomics of methadone: clinical and forensic toxicological implications and variability of dose response. Drug Metab Rev. 2016;48(4):568–76.

    CAS  PubMed  Google Scholar 

  92. Herrlin K, Segerdahl M, Gustafsson LL, Kalso E. Methadone, ciprofloxacin, and adverse drug reactions. Lancet. 2000;356(9247):2069–70.

    CAS  PubMed  Google Scholar 

  93. Mclellan RA, Drobitch RK, Monshouwer M, Renton KW. Fluoroquinolone antibiotics inhibit cytochrome P450-mediated microsomal drug metabolism in rat and human. Drug Metab Dispos. 1996;24(10):1134–8.

    CAS  PubMed  Google Scholar 

  94. Jones CM, Baldwin GT, Manocchio T, White JO, Mack KA. Trends in methadone distribution for pain treatment, methadone diversion, and overdose deaths—United States, 2002–2014. MMWR Morb Mortal Wkly Rep. 2016;65(26):667–71.

    PubMed  Google Scholar 

  95. Paulozzi LJ, Mack K a, Jones CM. Vital signs: risk for overdose from methadone used for pain relief—United States, 1999-2010. Morb Mortal Wkly Rep. 2012;61(26):493–7.

    Google Scholar 

  96. Drummer OH, Opeskin K, Syrjanen M, Cordner SM. Methadone toxicity causing death in ten subjects starting on a methadone maintenance program. Am J Forensic Med Pathol. 1992;13(4):346–50.

    CAS  PubMed  Google Scholar 

  97. Wedam EF, Bigelow GE, Johnson RE, Nuzzo PA, Haigney MCP. QT-interval effects of methadone, levomethadyl, and buprenorphine in a randomized trial. Arch Intern Med. 2007;167(22):2469–75.

    CAS  PubMed  Google Scholar 

  98. Katchman AN. Influence of opioid agonists on cardiac human ether-a-go-go-related gene K+ currents. J Pharmacol Exp Ther. 2002;303(2):688–94.

    CAS  PubMed  Google Scholar 

  99. Isbister GK, Brown AL, Gill A, Scott AJ, Calver L, Dunlop AJ. QT interval prolongation in opioid agonist treatment: analysis of continuous 12-lead electrocardiogram recordings. Br J Clin Pharmacol. 2017.

  100. Anchersen K, Clausen T, Gossop M, Hansteen V, Waal H. Prevalence and clinical relevance of corrected QT interval prolongation during methadone and buprenorphine treatment: a mortality assessment study. Addiction. 2009;104(6):993–9.

    PubMed  Google Scholar 

  101. Florian J, Garnett CE, Nallani SC, Rappaport BA, Throckmorton DC. A modeling and simulation approach to characterize methadone QT prolongation using pooled data from five clinical trials in MMT patients. Clin Pharmacol Ther. Nature Publishing Group. 2012;91(4):666–72.

    CAS  PubMed  Google Scholar 

  102. Priori SG, Schwartz PJ, Napolitano C, Bloise R, Ronchetti E, Grillo M, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348(19):1866–74.

    PubMed  Google Scholar 

  103. Bednar MM, Harrigan EP, Ruskin JN. Torsades de pointes associated with nonantiarrhythmic drugs and observations on gender and QTc. Am J Cardiol. 2002;89(11):1316–9.

    CAS  PubMed  Google Scholar 

  104. Krantz MJ, Lewkowiez L, Hays H, Woodroffe MA, Robertson AD, Mehler PS. Torsade de pointes associated with very-high-dose methadone. Ann Intern Med. 2002;137(6):501–4.

    CAS  PubMed  Google Scholar 

  105. Pearson EC, Woosley RL. QT prolongation and torsades de pointes among methadone users: reports to the FDA spontaneous reporting system. Pharmacoepidemiol Drug Saf. 2005;14(11):747–53.

    CAS  PubMed  Google Scholar 

  106. Flory JH, Wiesenthal AC, Thaler HT, Koranteng L, Moryl N. Methadone use and the risk of hypoglycemia for inpatients with cancer pain. J Pain Symptom Manag. Elsevier Inc. 2016;51(1):79–87.e1.

    Google Scholar 

  107. Moryl N, Pope J, Obbens E. Hypoglycemia during rapid methadone dose escalation. J Opioid Manag. 2013;9(1):29–34.

    PubMed  Google Scholar 

  108. Toce MS, Stefater MA, Breault DT, Burns MM. A case report of methadone-associated hypoglycemia in an 11-month-old male. Clin Toxicol. Informa UK Limited, trading as Taylor & Francis Group; 2017:1–3.

  109. Masharani U, Alba D. Methadone-associated hypoglycemia in chronic renal failure masquerading as an insulinoma. Pain Med. 2017:1–3.

  110. Goldfrank L, Weisman RS, Errick JK, Lo MW. A dosing nomogram for continuous infusion intravenous naloxone. Ann Emerg Med. 1986;15(5):566–70.

    CAS  PubMed  Google Scholar 

  111. Krantz MJ, Martin J, Stimmel B, Mehta D, Haigney MCP. Annals of internal medicine clinical guidelines QTc interval screening in methadone treatment. 2013.

  112. Hoshino K, Ogawa K, Hishitani T, Isobe T, Eto Y. Optimal administration dosage of magnesium sulfate for torsades de pointes in children with long QT syndrome. J Am Coll Nutr. 2004;23(5):497S–500S.

    CAS  PubMed  Google Scholar 

  113. Tzivoni D, Banai S, Schuger C, Benhorin J, Keren A, Gottlieb S, et al. Treatment of torsade de pointes with magnesium sulfate. Circulation. 1988;77(2):392–7.

    CAS  PubMed  Google Scholar 

  114. Gupta A, Lawrence AT, Krishnan K, Kavinsky CJ, Trohman RG. Current concepts in the mechanisms and management of drug-induced QT prolongation and torsade de pointes. Am Heart J. 2007;153(6):891–9.

    PubMed  Google Scholar 

  115. Othong R, Devlin JJ, Kazzi ZN. Medical toxicologists’ practice patterns regarding drug-induced QT prolongation in overdose patients: a survey in the United States of America, Europe, and Asia Pacific region. Clin Toxicol. 2015;53(4):204–9.

    CAS  Google Scholar 

  116. Gowing L, Farrell M, Ali R, White JM. Alpha2-adrenergic agonists for the management of opioid withdrawal. Cochrane Database Syst Rev. 2016;5:CD002024.

    Google Scholar 

  117. Catapres Package Insert [Internet]. [cited 2018 Jul 12]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/017407s037lbl.pdf.

  118. Seger DL. Clonidine toxicity revisited. J Toxicol Clin Toxicol. 2002;40(2):145–55.

    CAS  PubMed  Google Scholar 

  119. Baselt R. Disposition of toxic drugs and chemicals in man. 9th ed. Seal Beach: Biomedical Publications; 2011.

    Google Scholar 

  120. Dollery CT, Davies DS, Draffan GH, Dargie HJ, Dean CR, Reid JL, et al. Clinical pharmacology and pharmacokinetics of clonidine. Clin Pharmacol Ther. 1976;19(1):11–7.

    CAS  PubMed  Google Scholar 

  121. Lowenthal DT, Matzek KM, MacGregor TR. Clinical pharmacokinetics of clonidine. Clin Pharmacokinet. 1988;14(5):287–310.

    CAS  PubMed  Google Scholar 

  122. Szabo B. Imidazoline antihypertensive drugs: a critical review on their mechanism of action. Pharmacol Ther. 2002;93(1):1–35.

    CAS  PubMed  Google Scholar 

  123. Correa-Sales C, Rabin BC, Maze M. A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology. 1992;76(6):948–52.

    CAS  PubMed  Google Scholar 

  124. Saunders C, Limbird LE. Localization and trafficking of alpha2-adrenergic receptor subtypes in cells and tissues. Pharmacol Ther. 1999;84:193–205.

    CAS  PubMed  Google Scholar 

  125. Wang W, Yuan W, Ren A, Pan Y, Tang C, Su D. Role of I1-imidazoline receptors within the caudal ventrolateral medulla in cardiovascular responses to clonidine in rats. J Cardiovasc Pharmacol. 2003;42(1):1–9.

    CAS  PubMed  Google Scholar 

  126. Ernsberger P, Giuliano R, Willette RN, Reis DJ. Role of imidazole receptors in the vasodepressor response to clonidine analogs in the rostral ventrolateral medulla. J Pharmacol Exp Ther. 1990;253(1):408–18.

    CAS  PubMed  Google Scholar 

  127. Lowry J a, Brown JT. Significance of the imidazoline receptors in toxicology. Clin Toxicol. 2014;52(5):454–69.

    CAS  Google Scholar 

  128. Farsang C, Kapocsi J, Vajda L, Varga K, Malisak Z, Fekete M, et al. Reversal by naloxone of the antihypertensive action of clonidine: involvement of the sympathetic nervous system. Circulation. 1984;69(3):461–7.

    CAS  PubMed  Google Scholar 

  129. Farsang C, Ramirez-Gonzalez MD, Mucci L, Kunos G. Possible role of an endogenous opiate in the cardiovascular effects of central alpha adrenoceptor stimulation in spontaneously hypertensive rats. J Pharmacol Exp Ther. 1980;214(1):203–8.

    CAS  PubMed  Google Scholar 

  130. Kunos G, Farsang C, Ramirez-Gonzales MD. Beta-endorphin: possible involvement in the antihypertensive effect of central alpha-receptor activation. Science. 1981;211(4477):82–4.

    CAS  PubMed  Google Scholar 

  131. Kunos G, Mosqueda-Garcia R, Mastrianni JA, Abbott FV. Endorphinergic mechanism in the central cardiovascular and analgesic effects of clonidine. Can J Physiol Pharmacol. 1987;65(8):1624–32.

    CAS  PubMed  Google Scholar 

  132. Bhalla S, Rapolaviciute V, Gulati A. Determination of α2-adrenoceptor and imidazoline receptor involvement in augmentation of morphine and oxycodone analgesia by agmatine and BMS182874. Eur J Pharmacol. 2011;651(1–3):109–21.

    CAS  PubMed  Google Scholar 

  133. Spaulding TC, Fielding S, Venafro JJ, Lal H. Antinociceptive activity of clonidine and its potentiation of morphine analgesia. Eur J Pharmacol. 1979;58(1):19–25.

    CAS  PubMed  Google Scholar 

  134. Nichols MH, King WD, James LP. Clonidine poisoning in Jefferson County, Alabama. Ann Emerg Med. 1997;29(4):511–7.

    CAS  PubMed  Google Scholar 

  135. Klein-Schwartz W. Trends and toxic effects from pediatric clonidine exposures. Arch Pediatr Adolesc Med. 2002;156(4):392–6.

    PubMed  Google Scholar 

  136. Isbister GK, Heppell SP, Page CB, Ryan NM. Adult clonidine overdose: prolonged bradycardia and central nervous system depression, but not severe toxicity. Clin Toxicol. 2017;55(3):187–92.

    CAS  Google Scholar 

  137. Frye CB, Vance MA. Hypertensive crisis and myocardial infarction following massive clonidine overdose. Ann Pharmacother. 2000;34(5):611–5.

    CAS  PubMed  Google Scholar 

  138. Perruchoud C, Bovy M, Durrer A, Rosato M, Rutschmann B, Mustaki JP, et al. Severe hypertension following accidental clonidine overdose during the refilling of an implanted intrathecal drug delivery system. Neuromodulation. 2012;15(1):31–4.

    PubMed  Google Scholar 

  139. Wang GS, Le Lait MC, Heard K. Unintentional pediatric exposures to central alpha-2 agonists reported to the national poison data system. J Pediatr. Elsevier Ltd. 2014;164(1):149–52.

    PubMed  Google Scholar 

  140. Romano MJ, Dinh A. A 1000-fold overdose of clonidine caused by a compounding error in a 5-year-old child with attention-deficit/hyperactivity disorder. Pediatrics. 2001;108(2):471–2.

    CAS  PubMed  Google Scholar 

  141. Niemann JT, Getzug T, Murphy W. Reversal of clonidine toxicity by naloxone. Ann Emerg Med. 1986;15(10):1229–31.

    CAS  PubMed  Google Scholar 

  142. Seger DL, Loden JK. Naloxone reversal of clonidine toxicity: dose, dose, dose. Clin Toxicol. Informa UK Limited, trading as Taylor & Francis Group; 2018:1–7.

  143. Gish EC, Miller JL, Honey BL, Johnson PN. Lofexidine, an α2-receptor agonist for opioid detoxification. Ann Pharmacother. 2010;44:343–51.

    PubMed  Google Scholar 

  144. FDA approves the first non-opioid treatment for management of opioid withdrawal symptoms in adults [Internet]. [cited 2018 Sep 24]. Available from: https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm607884.htm.

  145. Kahn A, Mumford JP, Rogers GA, Beckford H. Double-blind study of lofexidine and clonidine in the detoxification of opiate addicts in hospital. Drug Alcohol Depend. 1997;44(1):57–61.

    CAS  PubMed  Google Scholar 

  146. Lin SK, Strang J, Su LW, Tsai CJ, Hu WH. Double-blind randomised controlled trial of lofexidine versus clonidine in the treatment of heroin withdrawal. Drug Alcohol Depend. 1997;48(2):127–33.

    CAS  PubMed  Google Scholar 

  147. Carnwath T, Hardman J. Randomised double-blind comparison of lofexidine and clonidine in the out-patient treatment of opiate withdrawal. Drug Alcohol Depend. 1998;50(3):251–4.

    CAS  PubMed  Google Scholar 

  148. Schmittner J, Schroeder JR, Epstein DH, Krantz MJ, Eid NC, Preston KL. Electrocardiographic effects of lofexidine and methadone coadministration: secondary findings from a safety study. Pharmacotherapy. 2009;29(5):495–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Lasoff DR, Koh CH, Corbett B, Minns AB, Cantrell FL. Loperamide trends in abuse and misuse over 13 years: 2002-2015. Pharmacotherapy. 2017;37(2):249–53.

    PubMed  Google Scholar 

  150. Kaplan MA, Prior MJ, McKonly KI, DuPont HL, Temple AR, Nelson EB. A multicenter randomized controlled trial of a liquid loperamide product versus placebo in the treatment of acute diarrhea in children. Clin Pediatr (Phila). 1999;38:579–91.

    CAS  Google Scholar 

  151. Baker DE. Loperamide: a pharmacological review. Rev Gastroenterol Disord. 2007;7(Suppl 3):S11–8.

    PubMed  Google Scholar 

  152. Wu PE, Juurlink DN. Clinical review: loperamide toxicity. Ann Emerg Med. American College of Emergency Physicians. 2017;70(2):245–52.

    PubMed  Google Scholar 

  153. Kim KA, Chung J, Jung DH, Park JY. Identification of cytochrome P450 isoforms involved in the metabolism of loperamide in human liver microsomes. Eur J Clin Pharmacol. 2004;60(8):575–81.

    CAS  PubMed  Google Scholar 

  154. Awouters F, Niemegeers CJ, Janssen PA. Pharmacology of antidiarrheal drugs. Annu Rev Pharmacol Toxicol. 1983;23(113):279–301.

    CAS  PubMed  Google Scholar 

  155. Mackerer CR, Clay GA, Dajani EZ. Loperamide binding to opiate receptor sites of brain and myenteric plexus. J Pharmacol Exp Ther. 1976;199(1):131–40.

    CAS  PubMed  Google Scholar 

  156. De Haven-Hudkins DL, Cowan A, Cortes Burgos L, Daubert JD, Cassel JA, DeHaven RN, et al. Antipruritic and antihyperalgesic actions of loperamide and analogs. Life Sci. 2002;71(23):2787–96.

    Google Scholar 

  157. DeHaven-Hudkins DL, Burgos LC, Cassel JA, Daubert JD, DeHaven RN, Mansson E, et al. Loperamide (ADL 2-1294), an opioid antihyperalgesic agent with peripheral selectivity. J Pharmacol Exp Ther. 1999;289(1):494–502.

    CAS  PubMed  Google Scholar 

  158. Montesinos RN, Moulari B, Gromand J, Beduneau A, Lamprecht A, Pellequer Y. Coadministration of p-glycoprotein modulators on loperamide pharmacokinetics and brain distribution. Drug Metab Dispos. 2014;42(4):700–6.

    PubMed  Google Scholar 

  159. Wandel C, Kim R, Wood M, Wood A. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology. 2002;96(4):913–20.

    CAS  PubMed  Google Scholar 

  160. Sadeque AJM, Wandel C, He H, Shah S, Wood AJJ. Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther. 2000;68(3):231–7.

    CAS  PubMed  Google Scholar 

  161. Ekins S, Balakin KV, Savchuk N, Ivanenkov Y. Insights for human ether-a-go-go-related gene potassium channel inhibition using recursive partitioning and Kohonen and Sammon mapping techniques. J Med Chem. 2006;49(17):5059–71.

    CAS  PubMed  Google Scholar 

  162. Harmer AR, Valentin J-P, Pollard CE. On the relationship between block of the cardiac Na+ channel and drug-induced prolongation of the QRS complex. Br J Pharmacol. 2011;164(2):260–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kang J, Compton DR, Vaz RJ, Rampe D. Proarrhythmic mechanisms of the common anti-diarrheal medication loperamide: revelations from the opioid abuse epidemic. Naunyn Schmiedebergs Arch Pharmacol. 2016;389(10):1133–7.

    CAS  PubMed  Google Scholar 

  164. Bhatti Z, Norsworthy J, Szombathy T. Loperamide metabolite-induced cardiomyopathy and QTc prolongation. Clin Toxicol. Informa UK Limited, trading as Taylor 8 Francis Group; 2017:1–3.

  165. Marraffa JM, Holland MG, Sullivan RW, Morgan BW, Oakes JA, Wiegand TJ, et al. Cardiac conduction disturbance after loperamide abuse. Clin Toxicol. 2014;52(9):952–7.

    CAS  Google Scholar 

  166. Rasla S, St Amand A, Garas MK, El Meligy A, Minami T. Unexpected serious cardiac arrhythmias in the setting of loperamide abuse. R I Med J. 2017;100(4):33–6.

    Google Scholar 

  167. Wightman RS, Hoffman RS, Howland MA, Rice B, Biary R, Lugassy D. Not your regular high cardiac dysrhythmias caused by loperamide. Clin Toxicol. 2016;54(5):454–8.

    CAS  Google Scholar 

  168. Daniulaityte R, Carlson R, Falck R, Cameron D, Perera S, Chen L, et al. “I just wanted to tell you that loperamide WILL WORK”: a web-based study of extra-medical use of loperamide. Drug Alcohol Depend. Elsevier Ireland Ltd. 2013;130(1–3):241–4.

    CAS  PubMed  Google Scholar 

  169. Vakkalanka JP, Charlton NP, Holstege CP. Epidemiologic trends in loperamide abuse and misuse. Ann Emerg Med. 2016:73–8.

    PubMed  Google Scholar 

  170. Yu JH, Kim HJ, Lee S, Hwang SJ, Kim W, Moon CJ. LC-MS determination and bioavailability study of loperamide hydrochloride after oral administration of loperamide capsule in human volunteers. J Pharm Biomed Anal. 2004;36(2):421–7.

    CAS  PubMed  Google Scholar 

  171. Eggleston W, Clark KH, Marraffa JM. Loperamide abuse associated with cardiac dysrhythmia and death. Ann Emerg Med. 2016;69(1):83–6.

    PubMed  Google Scholar 

  172. Bishop-Freeman SC, Feaster MS, Beal J, Miller A, Hargrove RL, Brower JO, et al. Loperamide-related deaths in North Carolina. J Anal Toxicol. 2016;40(8):677–86.

    CAS  PubMed  Google Scholar 

  173. Friedli G, Haenggeli C-A. Loperamide overdose managed by naloxone. Lancet. 1980;315(8183):1413.

    Google Scholar 

  174. Khan IA, Long QT. Syndrome: diagnosis and management. Am Heart J. 2002;143(1):7–14.

    PubMed  Google Scholar 

  175. Eggleston W, Nacca N, Marraffa JM. Loperamide toxicokinetics: serum concentrations in the overdose setting. Clin Toxicol. 2015;53(5):495–6.

    Google Scholar 

  176. Katz KD, Cannon RD, Cook MD, Amaducci A, Day R, Enyart J, et al. Loperamide-induced torsades de pointes: a case series. J Emerg Med. Elsevier Inc. 2017;53(3):339–44.

    PubMed  Google Scholar 

  177. Lasoff DR, Schneir A. Ventricular dysrhythmias from loperamide misuse. J Emerg Med. Elsevier Inc. 2016;50(3):508–9.

    PubMed  Google Scholar 

  178. Suwanlert S. A study of kratom eaters in Thailand. Bull Narc. 27(3):21–7.

  179. Boyer EW, Babu KM, Adkins JE, McCurdy CR, Halpern JH. Self-treatment of opioid withdrawal using kratom (Mitragynia speciosa Korth). Addiction. 2008;103(6):1048–50.

    PubMed  PubMed Central  Google Scholar 

  180. Boyer EW, Babu KM, Macalino GE, Compton W. Self-treatment of opioid withdrawal with a dietary supplement, kratom. Am J Addict. 2007;16(5):352–6.

    PubMed  Google Scholar 

  181. Smith KE, Lawson T. Prevalence and motivations for kratom use in a sample of substance users enrolled in a residential treatment program. Drug Alcohol Depend. Elsevier. 2017;180:340–8.

    PubMed  Google Scholar 

  182. Singh D, Narayanan S, Vicknasingam B, Corazza O, Santacroce R, Roman-Urrestarazu A. Changing trends in the use of kratom (Mitragyna speciosa) in Southeast Asia. Hum Psychopharmacol. 2017;32(3):1–6.

    Google Scholar 

  183. Where to buy kratom? [Internet]. [cited 2018 Jun 13]. Available from: https://www.reddit.com/r/kratom/.

  184. Warner ML, Kaufman NC, Grundmann O. The pharmacology and toxicology of kratom: from traditional herb to drug of abuse. Int J Legal Med. 2016;130(1):127–38.

    PubMed  Google Scholar 

  185. Thongpradichote S, Matsumoto K, Tohda M, Takayama H, Aimi N, Sakai SI, et al. Identification of opioid receptor subtypes in antinociceptive actions of supraspinally-administered mitragynine in mice. Life Sci. 1998;62(16):1371–8.

    CAS  PubMed  Google Scholar 

  186. Matsumoto K, Hatori Y, Murayama T, Tashima K, Wongseripipatana S, Misawa K, et al. Involvement of mu-opioid receptors in antinociception and inhibition of gastrointestinal transit induced by 7-hydroxymitragynine, isolated from Thai herbal medicine Mitragyna speciosa. Eur J Pharmacol. 2006;549(1–3):63–70.

    CAS  PubMed  Google Scholar 

  187. Matsumoto K, Mizowaki M, Suchitra T, Murakami Y, Takayama H, Sakai SI, et al. Central antinociceptive effects of mitragynine in mice: contribution of descending noradrenergic and serotonergic systems. Eur J Pharmacol. 1996;317(1):75–81.

    CAS  PubMed  Google Scholar 

  188. Shamima AR, Fakurazi S, Hidayat MT, Hairuszah I, Moklas MAM, Arulselvan P. Antinociceptive action of isolated mitragynine from Mitragyna speciosa through activation of opioid receptor system. Int J Mol Sci. 2012;13(9):11427–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Takayama H. Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, Mitragyna speciosa. Chem Pharm Bull (Tokyo). 2004;52(8):916–28.

    CAS  Google Scholar 

  190. Takayama H, Ishikawa H, Kurihara M, Kitajima M, Aimi N, Ponglux D, et al. Studies on the synthesis and opioid agonistic activities of mitragynine-related indole alkaloids: discovery of opioid agonists structurally different from other opioid ligands. J Med Chem. 2002;45(9):1949–56.

    CAS  PubMed  Google Scholar 

  191. Trakulsrichai S, Sathirakul K, Auparakkitanon S, Krongvorakul J, Sueajai J, Noumjad N, et al. Pharmacokinetics of mitragynine in man. Drug Des Devel Ther. 2015;9:2421–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Anwar M, Law R, Schier J. Notes from the field: kratom (Mitragyna speciosa) exposures reported to poison centers—United States, 2010-2015. MMWR Morb Mortal Wkly Rep. 2016;65(29):748–9.

    PubMed  Google Scholar 

  193. Vicknasingam B, Narayanan S, Beng GT, Mansor SM. The informal use of ketum (Mitragyna speciosa) for opioid withdrawal in the northern states of peninsular Malaysia and implications for drug substitution therapy. Int J Drug Policy. Elsevier B.V. 2010;21(4):283–8.

    PubMed  Google Scholar 

  194. Singh D, Müller CP, Vicknasingam BK. Kratom (Mitragyna speciosa) dependence, withdrawal symptoms and craving in regular users. Drug Alcohol Depend. Elsevier Ireland Ltd. 2014;139:132–7.

    PubMed  Google Scholar 

  195. Nelsen JL, Lapoint J, Hodgman MJ, Aldous KM. Seizure and coma following Kratom (Mitragynina speciosa Korth) exposure. J Med Toxicol. 2010;6(4):424–6.

    PubMed  PubMed Central  Google Scholar 

  196. Dorman C, Wong M, Khan A. Cholestatic hepatitis from prolonged kratom use: a case report. Hepatology. 2015;61(3):1086–7.

    PubMed  Google Scholar 

  197. Kapp FG, Maurer HH, Auwärter V, Winkelmann M, Hermanns-Clausen M. Intrahepatic cholestasis following abuse of powdered Kratom (Mitragyna speciosa). J Med Toxicol. 2011;7(3):227–31.

    PubMed  PubMed Central  Google Scholar 

  198. Karinen R, Fosen JT, Rogde S, Vindenes V. An accidental poisoning with mitragynine. Forensic Sci Int. Elsevier Ireland Ltd. 2014;245:e29–32.

    CAS  PubMed  Google Scholar 

  199. McIntyre IM, Trochta A, Stolberg S, Campman SC. Mitragynine “kratom” related fatality: a case report with postmortem concentrations. J Anal Toxicol. 2015;39(2):152–5.

    CAS  PubMed  Google Scholar 

  200. Lydecker AG, Sharma A, McCurdy CR, Avery BA, Babu KM, Boyer EW. Suspected adulteration of commercial kratom products with 7-hydroxymitragynine. J Med Toxicol. 2016;12(4):341–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Kronstrand R, Roman M, Thelander G, Eriksson A. Unintentional fatal intoxications with mitragynine and O-desmethyltramadol from the herbal blend Krypton. J Anal Toxicol. 2011;35(May):242–7.

    CAS  PubMed  Google Scholar 

  202. Fink K, Dooley DJ, Meder WP, Suman-Chauhan N, Duffy S, Clusmann H, et al. Inhibition of neuronal Ca2+ influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology. 2002;42(2):229–36.

    CAS  PubMed  Google Scholar 

  203. Sills GJ. The mechanisms of action of gabapentin and pregabalin. Curr Opin Pharmacol. 2006;6:108–13.

    CAS  PubMed  Google Scholar 

  204. Kheirabadi GR, Ranjkesh M, Maracy MR, Salehi M. Effect of add-on gabapentin on opioid withdrawal symptoms in opium-dependent patients. Addiction. 2008;103(9):1495–9.

    PubMed  Google Scholar 

  205. Salehi M, Kheirabadi GR, Maracy MR, Ranjkesh M. Importance of gabapentin dose in treatment of opioid withdrawal. J Clin Psychopharmacol. 2011;31(5):593–6.

    CAS  PubMed  Google Scholar 

  206. Peckham AM, Evoy KE, Covvey JR, Ochs L, Fairman KA, Sclar DA. Predictors of gabapentin overuse with or without concomitant opioids in a commercially insured U.S. population. Pharmacotherapy. 2018;38(4):436–43.

    CAS  PubMed  Google Scholar 

  207. Smith RV, Lofwall MR, Havens JR. Abuse and diversion of gabapentin among nonmedical prescription opioid users in Appalachian Kentucky. Am J Psychiatry. 2015;172(5):487–8.

    PubMed  PubMed Central  Google Scholar 

  208. Baird CRW, Fox P, Colvin LA. Gabapentinoid abuse in order to potentiate the effect of methadone: a survey among substance misusers. Eur Addict Res. 2014;20(3):115–8.

    PubMed  Google Scholar 

  209. Peckham AM, Fairman KA, Sclar DA. All-cause and drug-related medical events associated with overuse of gabapentin and/or opioid medications: a retrospective cohort analysis of a commercially insured US population. Drug Saf. Springer International Publishing. 2018;41(2):213–28.

    CAS  PubMed  Google Scholar 

  210. Gomes T, Juurlink DN, Antoniou T, Mamdani MM, Paterson JM, van den Brink W. Gabapentin, opioids, and the risk of opioid-related death: a population-based nested case–control study. PLoS Med. 2017;14(10):1–13.

    Google Scholar 

  211. Duwiejua M, Woode E, Obiri DD. Pseudo-akuammigine, an alkaloid from Picralima nitida seeds, has anti-inflammatory and analgesic actions in rats. J Ethnopharmacol. 2002;81(1):73–9.

    CAS  PubMed  Google Scholar 

  212. Menzies JRW, Paterson SJ, Duwiejua M, Corbett AD. Opioid activity of alkaloids extracted from Picralima nitida (fam. Apocynaceae). Eur J Pharmacol. 1998;350(1):101–8.

    CAS  PubMed  Google Scholar 

  213. Akuamma seeds [Internet]. [cited 2017 Aug 10]. Available from: https://www.reddit.com/r/AkuammaSeed/.

  214. Fakeye TO, Awe SO, Odelola HA, Ola-Davies OE, Itiola OA, Obajuluwa T. Evaluation of valuation of toxicity profile of an alkaloidal fraction of the stem bark of Picralima nitida (fam. Apocynacaes). J Herb Pharmacother. 2004;4(3):37–45.

    CAS  PubMed  Google Scholar 

  215. Lu L, Liu Y, Zhu W, Shi J, Liu Y, Ling W, et al. Traditional medicine in the treatment of drug addiction. Am J Drug Alcohol Abuse. 2009;35(1):1–11.

    CAS  PubMed  Google Scholar 

  216. Steiner GG. Kava as an anticraving agent: preliminary data. Pac Health Dialog. 2001;8(2):335–9.

    CAS  PubMed  Google Scholar 

  217. Sarris J, LaPorte E, Schweitzer I. Kava: a comprehensive review of efficacy, safety, and psychopharmacology. Aust N Z J Psychiatry. 2011;45(1):27–35.

    PubMed  Google Scholar 

  218. Sarris J, Stough C, Bousman CA, Wahid ZT, Murray G, Teschke R, et al. Kava in the treatment of generalized anxiety disorder. J Clin Psychopharmacol. 2013;33(5):643–8.

    PubMed  Google Scholar 

  219. Teschke R, Genthner A, Wolff A. Kava hepatotoxicity: comparison of aqueous, ethanolic, acetonic kava extracts and kava-herbs mixtures. J Ethnopharmacol. 2009;123(3):378–84.

    CAS  PubMed  Google Scholar 

  220. Teschke R, Sarris J, Schweitzer I. Kava hepatotoxicity in traditional and modern use: the presumed Pacific kava paradox hypothesis revisited. Br J Clin Pharmacol. 2012;73(2):170–4.

    PubMed  PubMed Central  Google Scholar 

  221. Teschke R, Schulze J. Risk of kava hepatotoxicity and the FDA consumer advisory. JAMA. 2010;304(19):2174.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Toce.

Ethics declarations

Financial Disclosure Statement

None of the authors have any financial disclosures relevant to this manuscript.

Conflicts of Interests

None.

Sources of Funding

Dr. Boyer is supported by the National Institutes of Health 1K24DA037109.​ Dr. Chai is supported by the National Institutes of Health K23DA044874. Dr. Burns is the Pediatric Toxicology Section Editor for UpToDate®. No funding was provided for the production of this manuscript.

Author Attestation

No honorarium, grant, or other form of payment was given to anyone to produce this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toce, M.S., Chai, P.R., Burns, M.M. et al. Pharmacologic Treatment of Opioid Use Disorder: a Review of Pharmacotherapy, Adjuncts, and Toxicity. J. Med. Toxicol. 14, 306–322 (2018). https://doi.org/10.1007/s13181-018-0685-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13181-018-0685-1

Keywords

Navigation