Nationwide Scorpion Exposures Reported to US Poison Control Centers from 2005 to 2015



Previous studies of scorpion envenomation in the United States (US) have focused on Arizona and the bark scorpion, Centruroides sculpturatus. Although many other scorpion species live in the US, information about envenomations in other states is lacking.


Nationwide scorpion exposures from 2005 to 2015 were analyzed using the National Poison Data System.


Of the 185,402 total exposures, Arizona (68.2%), Texas (10.3%), and Nevada (4.2%) were the top contributors. However, six other southern states reported greater than 100 cases annually, primarily during the warmer months and evening hours. Envenomations occurred most often in a home (97.8%) and were typically managed on-site (90.1%). Pain was the most common effect nationwide (88.7%). Arizona had the highest frequencies of sensory, neuromuscular, and respiratory effects along with higher hospitalization and ICU admission rates, although the latter appeared to drop over the study period. In contrast, local skin effects such as erythema and edema were more common outside of Arizona. Children under 10 years of age in Arizona and Nevada had the highest rates of systemic effects, hospitalization, and ICU admission.


Scorpion envenomations occurred throughout the southern US with similar seasonal and daily variations. Common clinical effects included pain, local edema, and erythema, except in Arizona and Nevada where severe systemic symptoms were more common. Systemic effects correlated with high rates of ICU admissions and intubations, especially in children under 10 years of age.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Mowry JB, Spyker DA, Brooks DE, McMillan N, Schauben JL. 2014 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 32nd annual report. Clin Toxicol (Phila). 2015;53(10):962–1147. doi:10.3109/15563650.2015.1102927.

  2. 2.

    Stahnke HL. Some observations of the genus Centruroides marx (Buthidae, Scorpionida) and C. sculpturatus Ewing. Entomol News. 1971;82(11):281–307.

  3. 3.

    Valdez-Cruz NA, Dávila S, Licea A, Corona M, Zamudio FZ, García-Valdes J, et al. Biochemical, genetic and physiological characterization of venom components from two species of scorpions: Centruroides exilicauda Wood and Centruroides sculpturatus Ewing. Biochimie. 2004;86(6):387–96. doi:10.1016/j.biochi.2004.05.005.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Stahnke HL. The Arizona scorpion problem. Ariz Med. 1950;7(3):23–9.

    Google Scholar 

  5. 5.

    Curry SC, Vance MV, Ryan PJ, Kunkel DB, Northey WT. Envenomation by the scorpion Centruroides sculpturatus. J Toxicol Clin Toxicol. 1983;21(4–5):417–49.

    Article  PubMed  Google Scholar 

  6. 6.

    Likes K, Banner Jr W, Chavez M. Centruroides exilicauda envenomation in Arizona. West J Med. 1984;141(5):634–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Rimsza ME, Zimmerman DR, Bergeson PS. Scorpion envenomation. Pediatrics. 1980;66(2):298–302.

    CAS  PubMed  Google Scholar 

  8. 8.

    Crawford CS, Krehoff RC. Diel activity in sympatric populations of the scorpions Centruroides sculpturatus (Buthidae) and Diplocentrus spitzeri (Diplocentridae). J Arachnol. 1975;2:195–204.

    Google Scholar 

  9. 9.

    Russell FE, Madon MB. Introduction of the scorpion Centruroides exilicauda into California and its public health significance. Toxicon. 1984;22(4):658–64.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Forrester MB, Stanley SK. Epidemiology of scorpion envenomations in Texas. Vet Hum Toxicol. 2004;46(4):219–21.

    PubMed  Google Scholar 

  11. 11.

    Baerg WJ. The effect of the venom of some supposedly poisonous arthropods. Ann Entomol Soc Am. 1924;17(3):343–52.

    Article  Google Scholar 

  12. 12.

    Rowe AH, Xiao Y, Scales J, Linse KD, Rowe MP, Cummins TR, et al. Isolation and characterization of CvIV4: a pain inducing alpha-scorpion toxin. PLoS One. 2011;6(8):e23520. doi:10.1371/journal.pone.0023520.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Stahnke HL. The venomous effects of some Arizona scorpions. Science. 1938;88(2277):166–7. doi:10.1126/science.88.2277.166.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Stahnke HL. The scorpions of Arizona [dissertation]. Iowa: Iowa State University; 1939.

    Google Scholar 

  15. 15.

    Shelley RM, Sissom WD. Distributions of the scorpions Centruroides vittatus (Say) and Centruroides hentzi (Banks) in the United States and Mexico (Scorpiones, Buthidae). J Arachnol. 1995;23:100–10.

    Google Scholar 

  16. 16.

    Yamashita T, Rhoads DD. Species delimitation and morphological divergence in the scorpion Centruroides vittatus (Say, 1821): insights from phylogeography. PLoS One. 2013;8(7):e68282. doi:10.1371/journal.pone.0068282.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    More D, Nugent J, Hagan L, Demain J, Schwertner H, Whisman B, et al. Identification of allergens in the venom of the common striped scorpion. Ann Allergy Asthma Immunol. 2004;93(5):493–8. doi:10.1016/S1081-1206(10)61418-4.

    Article  PubMed  Google Scholar 

  18. 18.

    Nugent JS, More DR, Hagan LL, Demain JG, Whisman BA, Freeman TM. Cross-reactivity between allergens in the venom of the common striped scorpion and the imported fire ant. J Allergy Clin Immunol. 2004;114(2):383–6. doi:10.1016/j.jaci.2004.04.016.

    Article  PubMed  Google Scholar 

  19. 19.

    Demain JG, Goetz DW. Immediate, late, and delayed skin test responses to Centruroides vittatus scorpion venom. J Allergy Clin Immunol. 1995;95(1 Pt 1):135–7. doi:10.1016/s0091-6749(95)70163-x.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Elston DM. What’s eating you? Plain eastern stripeless scorpion (Vaejovis carolinianus). Cutis. 2006;78(6):393–4.

    PubMed  Google Scholar 

  21. 21.

    Stevenson DJ, Greer G, Elliott MJ. The distribution and habitat of Centruroides hentzi (Banks) (Scorpiones, Buthidae) in Georgia. Southeast Nat. 2012;11(4):589–98. doi:10.1656/058.011.0404.

    Article  Google Scholar 

  22. 22.

    Ayrey RF, Soleglad ME. New species of Vaejovis from the Santa Rita Mountains, southern Arizona (Scorpiones: Vaejovidae). Euscorpius. 2014;183:1–13.

    Google Scholar 

  23. 23.

    Riley BD, LoVecchio F, Pizon AF. Lack of scorpion antivenom leads to increased pediatric ICU admissions. Ann Emerg Med. 2006;47(4):398–9. doi:10.1016/j.annemergmed.2005.11.042.

    Article  PubMed  Google Scholar 

  24. 24.

    Boyer L, Degan J, Ruha AM, Mallie J, Mangin E, Alagon A. Safety of intravenous equine F(ab')2: insights following clinical trials involving 1534 recipients of scorpion antivenom. Toxicon. 2013;76:386–93. doi:10.1016/j.toxicon.2013.07.017.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    O’Connor A, Ruha AM. Clinical course of bark scorpion envenomation managed without antivenom. J Med Toxicol. 2012;8(3):258–62. doi:10.1007/s13181-012-0233-3.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Min Kang.

Ethics declarations


No funding was secured for this study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Table S1

(PDF 178 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, A.M., Brooks, D.E. Nationwide Scorpion Exposures Reported to US Poison Control Centers from 2005 to 2015. J. Med. Toxicol. 13, 158–165 (2017).

Download citation


  • Scorpions
  • Poison control centers
  • United States