Skip to main content

Advertisement

Log in

The Vitamin B12 Analog Cobinamide Is an Effective Antidote for Oral Cyanide Poisoning

  • Original Article
  • Published:
Journal of Medical Toxicology Aims and scope Submit manuscript

Abstract

Introduction

Cyanide is a major chemical threat, and cyanide ingestion carries a higher risk for a supra-lethal dose exposure compared to inhalation but provides an opportunity for effective treatment due to a longer treatment window and a gastrointestinal cyanide reservoir that could be neutralized prior to systemic absorption. We hypothesized that orally administered cobinamide may function as a high-binding affinity scavenger and that gastric alkalinization would reduce cyanide absorption and concurrently increase cobinamide binding, further enhancing antidote effectiveness.

Methods

Thirty New Zealand white rabbits were divided into five groups and were given a lethal dose of oral cyanide poisoning (50 mg). The survival time of animals was monitored with oral cyanide alone, oral cyanide with gastric alkalinization with oral sodium bicarbonate buffer (500 mg), and in combination with either aquohydroxocobinamide or dinitrocobinamide (250 mM). Red blood cell cyanide concentration, plasma cobinamide, and thiocyanate concentrations were measured from blood samples.

Results

In cyanide ingested animals, oral sodium bicarbonate alone significantly prolonged survival time to 20.3 ± 8.6 min compared to 10.5 ± 4.3 min in saline-treated controls, but did not lead to overall survival. Aquohydroxocobinamide and dinitrocobinamide increased survival time to 64 ± 41 (p < 0.05) and 75 ± 16.4 min (p < 0.001), respectively. Compared to aquohydroxocobinamide, dinitrocobinamide showed greater systemic absorption and reduced blood pressure. Dinitrocobinamide also markedly increased the red blood cell cyanide concentration. Under all conditions, the plasma thiocyanate concentration gradually increased with time.

Conclusion

This study demonstrates a promising new approach to treat high-dose cyanide ingestion, with gastric alkalinization alone and in combination with oral cobinamide for treating a supra-lethal dose of orally administered cyanide in rabbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DOS:

Diffuse optical spectroscopy

FD:

Frequency domain

SS:

Steady state

OxyHb:

Oxyhemoglobin

DeoxyHb:

Deoxyhemoglobin

CytcOx:

Cytochrome C oxidase

References

  1. SI B, TG B. Medical aspects of chemical and biological warfare. Chapter 10, cyanide poisoning. In: FR S, ET T, DR F, Borden Institute (U.S.), editors. Textbook of military medicine. Part I, warfare, weaponry, and the casualty. Washington, D.C.: Borden Institute, Walter Reed Army Medical Center; Office of the Surgeon General, U.S. Army; U.S. Army Medical Dept. Center and School; U.S. Army Medical Research and Material Command; Uniformed Services University of the Health Sciences; 1997. p. 272–86.

    Google Scholar 

  2. Eckstein M. Cyanide as a chemical terrorism weapon. JEMS. 2004;29(8):suppl 22–31.

    Google Scholar 

  3. Gracia R, Shepherd G. Cyanide poisoning and its treatment. Pharmacotherapy. 2004;24(10):1358–65.

    Article  CAS  PubMed  Google Scholar 

  4. Martin CO, Adams Jr HP. Neurological aspects of biological and chemical terrorism: a review for neurologists. Arch Neurol. 2003;60(1):21–5.

    Article  PubMed  Google Scholar 

  5. Dzombak DA, Ghosh RS, Wong-Chong GM. Cyanide in water and soil: chemistry, risk, and management. Boca Raton, FL: CRC Press; 2006.

    Google Scholar 

  6. Suskind R, editor. The one percent doctrine: deep inside America’s pursuit of its enemies since 9/11. New York, NY: Simon & Schuster; 2006.

    Google Scholar 

  7. Beering P. Threats on tap: understanding the terrorist threat to water. J Water Resour Plan Manag. 2002;128(3):163–7. doi:10.1061/(ASCE)0733-9496(2002)128:3(163).

    Article  Google Scholar 

  8. Keim ME. Terrorism involving cyanide: the prospect of improving preparedness in the prehospital setting. Prehosp Disaster Med. 2006;21(SupplementS2):s56–60. doi:10.1017/S1049023X00015910.

    Article  PubMed  Google Scholar 

  9. Khan AS, Swerdlow DL, Juranek DD. Precautions against biological and chemical terrorism directed at food and water supplies. Public Health Rep. 2001;116(1):3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bhattacharya R. Antidotes to cyanide poisoning: present status. Indian J Pharm. 2000;32(2):94–101.

    CAS  Google Scholar 

  11. Cummings TF. The treatment of cyanide poisoning. Occup Med (Lond). 2004;54(2):82–5.

    Article  CAS  Google Scholar 

  12. Bebarta VS, Tanen DA, Boudreau S, Castaneda M, Zarzabal LA, Vargas T, et al. Intravenous cobinamide versus hydroxocobalamin for acute treatment of severe cyanide poisoning in a swine (Sus scrofa) model. Ann Emerg Med. 2014. doi:10.1016/j.annemergmed.2014.02.009.

    PubMed  PubMed Central  Google Scholar 

  13. Brenner M, Kim JG, Lee J, Mahon SB, Lemor D, Ahdout R, et al. Sulfanegen sodium treatment in a rabbit model of sub-lethal cyanide toxicity. Toxicol Appl Pharmacol. 2010;248(3):269–76. doi:10.1016/j.taap.2010.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brenner M, Kim JG, Mahon SB, Lee J, Kreuter KA, Blackledge W, et al. Intramuscular cobinamide sulfite in a rabbit model of sublethal cyanide toxicity. Ann Emerg Med. 2010;55(4):352–63. doi:10.1016/j.annemergmed.2009.12.002.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Brenner M, Mahon SB, Lee J, Kim J, Mukai D, Goodman S, et al. Comparison of cobinamide to hydroxocobalamin in reversing cyanide physiologic effects in rabbits using diffuse optical spectroscopy monitoring. J Biomed Opt. 2010;15(1):017001. doi:10.1117/1.3290816.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Broderick KE, Potluri P, Zhuang S, Scheffler IE, Sharma VS, Pilz RB, et al. Cyanide detoxification by the cobalamin precursor cobinamide. Exp Biol Med. 2006;231(5):641–9.

    CAS  Google Scholar 

  17. Chan A, Crankshaw DL, Monteil A, Patterson SE, Nagasawa HT, Briggs JE, et al. The combination of cobinamide and sulfanegen is highly effective in mouse models of cyanide poisoning. Clin Toxicol. 2011;49(5):366–73. doi:10.3109/15563650.2011.584879.

    Article  CAS  Google Scholar 

  18. Kim JG, Lee J, Mahon SB, Mukai D, Patterson SE, Boss GR, et al. Noninvasive monitoring of treatment response in a rabbit cyanide toxicity model reveals differences in brain and muscle metabolism. J Biomed Opt. 2012;17(10):105005. doi:10.1117/1.JBO.17.10.105005.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chan A, Balasubramanian M, Blackledge W, Mohammad OM, Alvarez L, Boss GR, et al. Cobinamide is superior to other treatments in a mouse model of cyanide poisoning. Clin Toxicol (Phila). 2010;48(7):709–17. doi:10.3109/15563650.2010.505197.

    Article  CAS  Google Scholar 

  20. Chan A, Jiang J, Fridman A, Guo LT, Shelton GD, Liu M-T, et al. Nitrocobinamide, a new cyanide antidote that can be administered by intramuscular injection. J Med Chem. 2015;58(4):1750–9. doi:10.1021/jm501565k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hayward GC, Hill HA, Pratt JM, Vanston NJ, Williams RJ. The chemistry of vitamin B 12. IV. The thermodynamic trans-effect. J Chem Soc Perkin 1. 1965:6485–93.

  22. Bebarta VS, Pitotti RL, Boudreau S, Tanen DA. Intraosseous versus intravenous infusion of hydroxocobalamin for the treatment of acute severe cyanide toxicity in a swine model. Acad Emerg Med Off J Soc Acad Emerg Med. 2014;21(11):1203–11. doi:10.1111/acem.12518.

    Article  Google Scholar 

  23. Broderick KE, Balasubramanian M, Chan A, Potluri P, Feala J, Belke DD, et al. The cobalamin precursor cobinamide detoxifies nitroprusside-generated cyanide. Exp Biol Med. 2007;232(6):789–98.

    CAS  Google Scholar 

  24. Newhouse K, Chiu N. Toxicological review of hydrogen cyanide and cyanide salts. In: Agency USEP, editor. Washington, DC: EPA http://www.epa.gov/iris/toxreviews/0060tr.pdf; Accessed on 20 March 2016.

  25. Atug O, Dobrucali A, Orlando R. Critical pH level of lye (NaOH) for esophageal injury. Dig Dis Sci. 2009;54(5):980–7. doi:10.1007/s10620-009-0767-7.

    Article  CAS  PubMed  Google Scholar 

  26. Bevilacqua F, Berger AJ, Cerussi AE, Jakubowski D, Tromberg BJ. Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods. Appl Opt (USA). 2000;39(34):6498–507.

    Article  CAS  Google Scholar 

  27. Lee J, Armstrong J, Kreuter K, Tromberg BJ, Brenner M. Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model. Physiol Meas. 2007;28(9):1057–66. doi:10.1088/0967-3334/28/9/007.

    Article  CAS  PubMed  Google Scholar 

  28. Lee J, El-Abaddi N, Duke A, Cerussi AE, Brenner M, Tromberg BJ. Noninvasive in vivo monitoring of methemoglobin formation and reduction with broadband diffuse optical spectroscopy. J Appl Physiol. 2006;100(2):615–22. doi:10.1152/japplphysiol.00424.2004.

    Article  CAS  PubMed  Google Scholar 

  29. Lee J, Keuter KA, Kim J, Tran A, Uppal A, Mukai D, et al. Noninvasive in vivo monitoring of cyanide toxicity and treatment using diffuse optical spectroscopy in a rabbit model. Mil Med. 2009;174(6):615–21.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee J, Kim JG, Mahon SB, Mukai D, Yoon D, Boss GR, et al. Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy. J Biomed Opt. 2014;19(5):055001. doi:10.1117/1.JBO.19.5.055001.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Merritt S, Gulsen G, Chiou G, Chu Y, Deng C, Cerussi AE, et al. Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms. Technol Cancer Res Treat. 2003;2(6):563–9.

    Article  CAS  PubMed  Google Scholar 

  32. Pham TH, Coquoz O, Fishikin JB, Anderson E, Tromberg BJ. Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy. Rev Sci Instrum. 2000;71:2500–13.

    Article  CAS  Google Scholar 

  33. Zijlstra WG, Buursma A, Assendelft OW. Visible and near-infrared absorption spectra of human and animal haemoglobin determination and application. Zeist, The Netherlands: CRC Press; 2000.

    Google Scholar 

  34. Rich PR, Moody AJ. Chapter 10 cytochrome c oxidase. In: Milazzo G, Graber P, editors. Treatise on bioelectrochemistry, vol. 3 Bioenergetics. Basel: Birkhauser Verlag; 1996.

    Google Scholar 

  35. Lundquist P, Rosling H, Sorbo B. Determination of cyanide in whole blood, erythrocytes, and plasma. Clin Chem. 1985;31(4):591–5.

    CAS  PubMed  Google Scholar 

  36. Blackledge WC, Blackledge CW, Griesel A, Mahon SB, Brenner M, Pilz RB, et al. New facile method to measure cyanide in blood. Anal Chem. 2010;82(10):4216–21. doi:10.1021/ac100519z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jangwoen Lee.

Ethics declarations

Conflicts of Interest

None

Sources of Funding

This study is supported by CounterACT NIH # 1U54 NS079201, CounterACT NIH # U01 NS058030, LAMMP # 445474-30136, and AMRMC W81XWH-12-2-0098.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Mahon, S.B., Mukai, D. et al. The Vitamin B12 Analog Cobinamide Is an Effective Antidote for Oral Cyanide Poisoning. J. Med. Toxicol. 12, 370–379 (2016). https://doi.org/10.1007/s13181-016-0566-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13181-016-0566-4

Keywords

Navigation