Skip to main content
Log in

Modeling the Pedestrian Crossing Decision Behavior Based on Vehicle Deceleration Patterns Using Virtual Reality Environment

  • Published:
International Journal of Intelligent Transportation Systems Research Aims and scope Submit manuscript

Abstract

Since a considerable number of traffic fatalities are crossing pedestrians all over the world, understanding the characteristics of the pedestrian’s decision to cross unsignalized crosswalks is important for applying proper countermeasures. This study aims to clarify the quantitative impact of approaching vehicle maneuvers and road geometry on pedestrian crossing decision probability and its timing. A virtual reality experiment was designed to collect pedestrian crossing behaviors at mid-block crosswalks under various conditions, including yielding and non-yielding vehicles to pedestrians. A binary logistic regression model was developed to describe the crossing decision probability at each time. This model can be helpful in designing the motion planning of AVs to improve their reliability on the road.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available upon reasonable request from the corresponding author.

Abbreviations

VR:

Virtual Reality

HMD:

Head Mounted Display

RI:

Refuge Island

AV:

Autonomous Vehicle

VIF :

Variance Inflation Factor

AIC:

Akaike’s Information Criterion

References

  1. World Health Organization: Road traffic injuries (2020). Retrieved (https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries)

    Google Scholar 

  2. Japan National Police Agency: Japan National Police Agency. Retrieved (https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00130002&tstat=000001027457&cycle=7&month=0&tclass1val=0)

  3. Onishi, H., Hirai, T., Kawasaki, R., Ito, H., Murase, T.: Analysis of pedestrian-fatality statistics in Japan and the US and vehicle-pedestrian communication for vehicle-pedestrian crash-warnings. Int. J. Automot. Eng. 9, 231–236 (2018)

    Article  Google Scholar 

  4. Pawar, D.S., Yadav, A.K.: Modelling the pedestrian dilemma zone at uncontrolled midblock sections. J. Safety Res. 80, 87–96 (2022). https://doi.org/10.1016/j.jsr.2021.11.006

    Article  Google Scholar 

  5. Iryo-Asano, M., Alhajyaseen, W.K.M.: Modeling pedestrian crossing speed profiles considering speed change behavior for the safety assessment of signalized intersections. Accid. Anal. Prev. 108, 332–342 (2017). https://doi.org/10.1016/J.AAP.2017.08.028

    Article  Google Scholar 

  6. Ackermann, C., Beggiato, M., Schubert, S., Krems, J.F.: An experimental study to investigate design and assessment criteria: What is important for communication between pedestrians and automated vehicles? Appl. Ergon. 75, 272–282 (2019). https://doi.org/10.1016/J.APERGO.2018.11.002

    Article  Google Scholar 

  7. Kang, D., Hu, F., Levin, M.W.: Impact of automated vehicles on traffic assignment, mode split, and parking behavior. Transp. Res. D Transp. Environ. 104, 103200 (2022). https://doi.org/10.1016/J.TRD.2022.103200

    Article  Google Scholar 

  8. Liu, P., Xu, S.X., Ong, G.P., Tian, Q., Ma, S.: Effect of autonomous vehicles on travel and urban characteristics. Transp. Res. Part B: Methodol. 153, 128–148 (2021). https://doi.org/10.1016/J.TRB.2021.08.014

    Article  Google Scholar 

  9. Hashimoto, Y., Gu, Y., Hsu, L.T., Iryo-Asano, M., Kamijo, S.: A probabilistic model of pedestrian crossing behavior at signalized intersections for connected vehicles. Transp. Res. Part C Emerg. Technol. 71, 164–181 (2016). https://doi.org/10.1016/J.TRC.2016.07.011

    Article  Google Scholar 

  10. Amado, H., Ferreira, S., Tavares, J.P., Ribeiro, P., Freitas, E.: Pedestrian-vehicle interaction at unsignalized crosswalks: A systematic review. Sustainability 12(7), 2805 (2020)

    Article  Google Scholar 

  11. Fu, T., Miranda-Moreno, L., Saunier, N.: A novel framework to evaluate pedestrian safety at non-signalized locations. Accid. Anal. Prev. 111, 23–33 (2018). https://doi.org/10.1016/J.AAP.2017.11.015

    Article  Google Scholar 

  12. Kadali, B.R., Vedagiri, P.: Effect of vehicular lanes on pedestrian gap acceptance behaviour. Procedia Soc. Behav. Sci. 104, 678–687 (2013). https://doi.org/10.1016/J.SBSPRO.2013.11.162

    Article  Google Scholar 

  13. Naquiyah Mohamad Nor, S., David Daniel, B., Hamidun, R., Al Bargi, W.A., Md Rohani, M., Prasetijo, J., Yusri Aman, M., Ambak, K.: Analysis of pedestrian gap acceptance and crossing decision in Kuala Lumpur. MATEC Web of Conferences ISCEE 2016. 08, 1–8 (2017)

  14. Almukdad, A., Muley, D., Alfahel, R., Alkadour, F., Ismail, R., Alhajyaseen, W. K.: Assessment of different pedestrian communication strategies for improving driver behavior at marked crosswalks on free channelized right turns. J. Safety Res. 84, 232–242 (2023). https://doi.org/10.1080/19439962.2019.1691100

    Article  Google Scholar 

  15. Zhao, J., Malenje, J.O., Tang, Y., Han, Y.: Gap acceptance probability model for pedestrians at unsignalized mid-block crosswalks based on logistic regression. Accid. Anal. Prev. 129, 76–83 (2019). https://doi.org/10.1016/j.aap.2019.05.012

    Article  Google Scholar 

  16. Vasudevan, V., Mehta, M., Dutta, B.: Pedestrian temporal gap acceptance behavior at unsignalized intersections in Kanpur, India. Transp. Res. Part F Traffic Psychol. Behav. 74, 95–103 (2020). https://doi.org/10.1016/J.TRF.2020.08.010

    Article  Google Scholar 

  17. Pawar, D.S., Patil, G.R.: Critical gap estimation for pedestrians at uncontrolled mid-block crossings on high-speed arterials. Saf. Sci. 86, 295–303 (2016). https://doi.org/10.1016/J.SSCI.2016.03.011

    Article  Google Scholar 

  18. Gulzar, M., Muhammad, Y., Muhammad, N.: A survey on motion prediction of pedestrians and vehicles for autonomous driving. IEEE Access 9, 137957–137969 (2021)

    Article  Google Scholar 

  19. Schöller, C., Aravantinos, V., Lay, F., Knoll, A.: What the constant velocity model can teach us about pedestrian motion prediction. IEEE Robot. Autom. Lett. 5, 1696–1703 (2019). https://doi.org/10.1109/LRA.2020.2969925

    Article  Google Scholar 

  20. Knittel, A., Antonello, M., Redford, J., Ramamoorthy, S.: Comparison of pedestrian prediction models from trajectory and appearance data for autonomous driving. Cornell University, (2023). https://doi.org/10.48550/arXiv.2305.15942

  21. Xu, Q., Wu, H., Wang, J., Xiong, H., Liu, J., Li, K.: Roadside pedestrian motion prediction using Bayesian methods and particle filter. IET Intel. Transport Syst. 15, 1167–1182 (2021). https://doi.org/10.1049/itr2.12090

    Article  Google Scholar 

  22. Lin, C.Y., Kau, L.J., Chan, C.Y.: Bimodal extended kalman filter-based pedestrian trajectory prediction. Sensors. 22(21), 8231 (2022). https://doi.org/10.3390/s22218231

    Article  Google Scholar 

  23. Lee, Y.M., Uttley, J., Solernou, A., Giles, O., Romano, R., Markkula, G., Merat, N.: Investigating pedestrians’ crossing behaviour during car deceleration using wireless head mounted display: an application towards the evaluation of eHMI of automated vehicles. Proceedings of the Tenth International Driving Symposium on Human Factors in Driver Assessment. 1–8 (2020)

  24. Dietrich, A., Maruhn, P., Schwarze, L., Bengler, K.: Implicit communication of automated vehicles in urban scenarios: Effects of pitch and deceleration on pedestrian crossing behavior. Adv. Intel. Syst. Comput. 1026, 176–181 (2020). https://doi.org/10.1007/978-3-030-27928-8_27

  25. Haq, M.F. ul, Iryo-Asano, M., Alhajyaseen, W.K.M., Samson, C.J.R., Zhu, H.: Impact of refuge island in two-lane roads on pedestrian crossing behavior: a virtual reality study. Can. J. Civ. Eng. (In press)

  26. Ishiyama, R., Goto, A., Nakamura, H.: Evaluation of the unsignalized two-stage crossing on basic road sections. JSTE J. Traffic Eng. 4(1) (2018), A_8-A_16. https://doi.org/10.14954/jste.4.1_A_8 (in Japanese)

  27. Rastogi, R., Chandra, S., Vamsheedhar, J., Das, V.R.: Parametric study of pedestrian speeds at midblock crossings. J. Urban Plan. Dev. 137, 381–389 (2011). https://doi.org/10.1061/(asce)up.1943-5444.0000083

    Article  Google Scholar 

  28. Hamed, M.M.: Analysis of pedestrians’ behavior at pedestrian crossings. Saf. Sci. 38, 63–82 (2001). https://doi.org/10.1016/S0925-7535(00)00058-8

    Article  Google Scholar 

  29. van der Molen, H.H.: Child pedestrian’s exposure, accidents and behavior†. Accid. Anal. Prev. 13, 193–224 (1981). https://doi.org/10.1016/0001-4575(81)90005-1

    Article  Google Scholar 

  30. Lobjois, R., Cavallo, V.: Age-related differences in street-crossing decisions: The effects of vehicle speed and time constraints on gap selection in an estimation task. Accid. Anal. Prev. 39, 934–943 (2007). https://doi.org/10.1016/J.AAP.2006.12.013

    Article  Google Scholar 

  31. Yagil, D.: Beliefs, motives and situational factors related to pedestrians’ self-reported behavior at signal-controlled crossings. Transp. Res. Part F Traffic Psychol. Behav. 3, 1–13 (2000). https://doi.org/10.1016/S1369-8478(00)00004-8

    Article  Google Scholar 

  32. Yannis, G., Papadimitriou, E., Theofilatos, A.: Pedestrian gap acceptance for mid-block street crossing. Transp. Plan. Technol. 36, 450–462 (2013). https://doi.org/10.1080/03081060.2013.818274

    Article  Google Scholar 

  33. Iryo-Asano, M., Hasegawa, Y., Dias, C.: Applicability of virtual reality systems for evaluating pedestrians’ perception and behavior. Transp. Res. Proc. 34, 67–74 (2018). https://doi.org/10.1016/j.trpro.2018.11.015

  34. Kwon, J.H., Kim, J., Kim, S., Cho, G.H.: Pedestrians safety perception and crossing behaviors in narrow urban streets: An experimental study using immersive virtual reality technology. Accid. Anal. Prev. 174, 106757 (2022). https://doi.org/10.1016/J.AAP.2022.106757

    Article  Google Scholar 

  35. Liu, W., Zhang, J., Li, X., Song, W.: Avoidance behaviors of pedestrians in a virtual-reality-based experiment. Phys. A: Stat Mech Appl. 590, 126758 (2022). https://doi.org/10.1016/J.PHYSA.2021.126758

  36. Angulo, A.V., Robartes, E., Guo, X., Chen, T.D., Heydarian, A., Smith, B.L.: Demonstration of virtual reality simulation as a tool for understanding and evaluating pedestrian safety and perception at midblock crossings. Transp. Res. Interdiscip. Perspect. 20, 100844 (2023). https://doi.org/10.1016/J.TRIP.2023.100844

    Article  Google Scholar 

  37. Bhagavathula, R., Williams, B., Owens, J., Gibbons, R.: The reality of virtual reality: A comparison of pedestrian behavior in real and virtual environments. Proc. Hum. Factors Ergon. 3, 2056–2060 (2018). https://doi.org/10.1177/1541931218621464

  38. Marquaridt, D.W.: Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12, 591–612 (1970). https://doi.org/10.1080/00401706.1970.10488699

    Article  Google Scholar 

  39. Tian, K., Markkula, G., Wei, C., Lee, Y.M., Madigan, R., Merat, N., Romano, R.: Explaining unsafe pedestrian road crossing behaviours using a Psychophysics-based gap acceptance model. Saf. Sci. 154, 105837 (2022). https://doi.org/10.1016/j.ssci.2022.105837

    Article  Google Scholar 

  40. Zhao, J., Malenje, J.O., Wu, J., Ma, R.: Modeling the interaction between vehicle yielding and pedestrian crossing behavior at unsignalized midblock crosswalks. Transp. Res. Part F Traffic Psychol. Behav. 73, 222–235 (2020). https://doi.org/10.1016/J.TRF.2020.06.019

    Article  Google Scholar 

  41. Gu, Y., Hashimoto, Y., Hsu, L.T., Iryo-Asano, M., Kamijo, S.: Human-like motion planning model for driving in signalized intersections. IATSS Res. 41, 129–139 (2017). https://doi.org/10.1016/J.IATSSR.2016.11.002

    Article  Google Scholar 

Download references

Acknowledgements

This publication was supported by the Qatar–Japan Research Collaboration Application Award [M-QJRC-2020-8] of Qatar University. This work also was supported by JSPS KAKENHI (grant number 20K04720).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Faizan ul Haq.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, M.F.u., Iryo-Asano, M. & Alhajyaseen, W.K.M. Modeling the Pedestrian Crossing Decision Behavior Based on Vehicle Deceleration Patterns Using Virtual Reality Environment. Int. J. ITS Res. (2024). https://doi.org/10.1007/s13177-024-00393-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13177-024-00393-5

Keywords

Navigation